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Abstract

A model selection test for nonnested misspecified diffusion models is developed based on

the Kullback-Leibler information criterion. A new asymptotic framework accounts for the high

significance of diffusion functions relative to drift functions for high frequency data. The test

examines the hypothesis that two competing models are equivalent. Our approach distin-

guishes the roles of diffusion and drift functions and shows the equivalence of models must be

understood differently depending on the sampling frequencies. When the sampling frequency

is high, it is of primary importance for a model to have a diffusion function close to the true

diffusion function, and we compare drift functions when the models can not be distinguished

by the diffusion functions. As the sampling frequencies become higher, the diffusion functions

are more important, and the information for ranking the drift functions is weaker. The drift

functions are useful only when we sample data for long enough. Our new asymptotics deals

with the different rates of information in the diffusion and drift functions by considering both

the sampling interval Δ and the sampling span T , and we show the sampling span must in-

crease at a relative speed faster than Δ−2 (or Δ2T → ∞) to ensure sufficient information to

be collected for distinguishing two models by their drift functions. The limiting distribution of

the test statistic is normal, and we compare different asymptotic approximations to the sam-

pling distribution of the test statistic using subsampling, and nonparametric block bootstrap

methods, as well as the standard normal approximation for the test statistics standardized

by the heteroskedasticity autocorrelation consistent variance estimators. We apply our test to

spot interest rate models and exchange rate models. We find that many popular models are

observationally equivalent.
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1 Introduction

We propose a model selection test for two nonnested misspecified diffusion models by comparing
the likelihoods based on the Kullback-Leibler information criterion (KLIC, Kullback and Leibler
(1951)) under an asymptotic environment that is useful to account for the dominant nature of
diffusion functions for high frequency data. Our testing framework examines the null hypothesis
of the equivalence of two models in the log-likelihood ratio criterion. The test is directional; a
model with a higher likelihood is preferred to the other, and a failure to reject the null suggests the
observational equivalence of candidate models.

We show the crucial role of sampling frequencies in distinguishing diffusion models. For high
frequency data, having a good diffusion function specification is more important than having a good
drift function. The asymmetric importance of diffusion and drift functions is more prominent as
the sampling frequency becomes higher. This phenomenon can not be explained by the traditional
model selection methods under a fixed sampling frequency such as Vuong (1989), Rivers and Vuong
(2002), and Choi and Kiefer (2008). Although our approach is developed on a similar ground to the
previous work, we separate the roles of diffusion and drift functions by considering sampling fre-
quencies explicitly showing the different relative informational value of diffusion and drift functions.
Specifically, we analyze the log-likelihood ratio criterion with the asymptotics under which data are
measured at increasing frequencies (infill) and over increasing periods (long span). While the long
span part of the asymptotics is useful in distinguishing two diffusion models, the infill part poses
a challenge in distinguishing the information from diffusion functions and drift functions, because
the information from drift functions does not accumulate by the infill.

As sampling frequencies increase, diffusion functions become the primary component in the log-
likelihood ratio criterion for the model comparison, and two diffusion models are equivalent if their
diffusion functions have an equal divergence from the true diffusion function. This implies that
the likelihood ratio criterion selects the diffusion model with a better diffusion function regardless
of the degree of misspecification in drift functions. Drift functions are useful only if the models
are equivalent in terms of the diffusion functions. For example, suppose (μ0, σ0) represents the
true drift function μ0 and diffusion function σ0. Let (μ∗

i , σ
∗
i ) be the “closest” members of diffusion

models i = 1, 2 in terms of the likelihood criterion. The closest members are defined from the
probability limits of maximum likelihood estimators. For high frequency data, a superior σ∗

i is
always preferred, and a good μ∗

i is valued when σ∗
1 and σ∗

2 are equivalent under the likelihood ratio
criterion. See Figure 1.

2



Figure 1 is about here.

When the diffusion functions are equivalent, the usefulness of the drift functions depends on the
sampling frequency, and comparing the two models with the drift functions can be difficult for high
frequency data. Since the diffusion functions have no information on the distinguishability of the
models in this case, the primary model selection factor in the likelihood ratio becomes a noise. If a
model has a better drift function than the other, the information about the superior drift function
must accumulate fast enough to dominate this noise for a valid inference. This “signal-to-noise”
ratio becomes lower as the sampling frequency is higher (or the sampling interval Δ is shorter)
relative to the sampling span T . We show that if the sampling frequency is too high, it is not
possible to distinguish the two models by their drift functions when they have equivalent diffusion
functions. The relative maximum data frequency (or relative minimum sampling span) allowed for
a valid model comparison is given by Δ

√
T → ∞. When the sampling frequency is higher than this

bound, the drift functions are not meaningful; only the diffusion functions matter.
This result also indicates that, when it is difficult to distinguish two models with diffusion

functions, it may help to sample infrequently to improve the signal-to-noise ratio. In practice, as
we are less flexible in choosing a sampling span generally, an infrequent sampling implies fewer
observations, and it is not clear if the infrequent sampling would help distinguish the models. But
we advise to try lower frequencies when the test fails to reject at a higher frequency.

We also show the choice of an approximation method for transition densities affects the model
selection criterion when the diffusion functions are equivalent. Therefore, the models are ranked by
both drift functions and approximation methods in this case, and the choice of an approximation
method should be considered as an integrated part of modeling.

A model selection test is different from nested or nonnested specification tests. Specification tests
have been widely used to check the adequacy of a model in explaining data. Although the evaluation
and the measurement of specification errors are important to choose or distinguish different models,
since all models are approximations, these methods may only lead to the conclusion that we can not
detect that a model is misspecified with a given sample size. If more data were available, the model
would be rejected naturally. Moreover, specification tests do not give a good indicator for choosing
the best model among many models, when multiple models could not be rejected making them
observationally indistinguishable. When models are thought to be misspecified, defining a measure
of misspecification and comparing the models for possible superiority can be a sensible alternative
approach. This type of approach is called the model selection (Davidson and MacKinnon (1981)).

For the model selection approach, testing equivalence of two models with the likelihood crite-
rion as a misspecification measure is studied in Vuong (1989) with i.i.d. data in discrete-time (fixed
Δ) sampling environments. Rivers and Vuong (2002) and Choi and Kiefer (2008) considered more
general situations using a large class of divergence measures for stationary data with unknown serial
correlation. They used the heteroskedasticity autocorrelation consistent (HAC) variance estima-
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tor to construct a robust test. Choi and Kiefer (2008) used the fixed-b asymptotic approximation
proposed by Kiefer and Vogelsang (2002) and Kiefer and Vogelsang (2005). The validity of these
approaches critically depends on the condition that candidate models are nonnested and misspeci-
fied. See Section 6 in Rivers and Vuong (2002) for further discussion. Our new approach extends the
model selection tests to diffusion models, and gives important new insights on the distinguishability
of models and its relationship with sampling frequencies in the continuous-time framework.

Chen and Scott (1993) applied the test of Vuong (1989) to compare nonnested affine interest
rate term structure models, and Aı̈t-Sahalia and Kimmel (2008) used Vuong’s test with the like-
lihoods obtained from the closed-form approximation of Aı̈t-Sahalia (2002). In both the papers,
the likelihoods should be i.i.d. for the validity of Vuong’s test, and the sampling frequencies are
expected to be low. Although we cover univariate diffusion processes only in this paper, our test
does not require the likelihoods to be i.i.d. and uses a practical asymptotic framework especially
relevant to financial data, for which high frequency measurements are available over a reasonably
long span that may make drift functions useful. More importantly, the new asymptotics deals with
the different roles of drift and diffusion functions directly, which was not considered in previous
literature.

We apply our test to select a spot interest rate model and a foreign exchange rate model, and
it is shown that many popular models are difficult to distinguish in practice.

2 Model Selection for Diffusion Models

2.1 Model

Consider a time-homogeneous stationary Itô diffusion process Xt and the standard Brownian motion
Wt defined on a probability space (Ω, F, P). Let Xt be a weak solution to a stochastic differential
equation (SDE)

dXt = μ0(Xt)dt + σ0(Xt)dWt, (2.1)

which satisfies the conditions in Karatzas and Shreve (1991) to admit a weak solution. We observe
n samples {XiΔ}n

i=0 from the diffusion process Xt measured from time zero to T = nΔ at a
non-random time interval Δ.

Let DX ⊂ R be the range of Xt such that {Xt|t ≥ 0} ⊂ DX , P-a.s. Consider a parametric
diffusion model M(θ) for Xt that solves a SDE

M(θ) : dXt = μ(Xt; θ)dt + σ(Xt; θ)dWt, (2.2)

where μ(·; ·) and σ(·; ·) are known functions with an unknown parameter vector θ in a compact set
Θ ⊂ R

k.
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Definition 2.1 A diffusion model M(θ) is misspecified if

P{(μ0(Xt), σ0(Xt)) = (μ(Xt; θ), σ(Xt; θ))} < 1, (2.3)

for all θ ∈ Θ.

Let p0(t, x, y) and p(t, x, y; θ) be the transition densities from X0 = x to Xt = y of the true
process Xt and the process that solves a misspecified diffusion model M(θ) respectively. Let the
maximum likelihood (ML) estimator

θ̂ = argmax
θ∈Θ

n∑
i=1

log p(Δ, X(i−1)Δ, XiΔ; θ) (2.4)

converge in probability to an interior point θ∗ of Θ as Δ → 0 and T → ∞. The probability limit θ∗

is the pseudo-true value, and we call the transition density p(t, x, y; θ∗) the pseudo-true transition
density. The process implied by M(θ∗) is said to be the pseudo-true process. In practice, the true
transition density p0(t, x, y) is not known, and the transition density p(t, x, y; θ) implied by M(θ)
may not be available in closed-form except for a few classes of diffusions. When we do not have
the closed-form transition density p(t, x, y; θ), we must obtain an approximate transition density
from a method such as the Euler or Milstein approximations, or the simulated likelihood method of
Brandt and Santa-Clara (2002), or the Hermite expansion of Aı̈t-Sahalia (2002). We show that the
choice of an approximation method has important implications in our model selection criterion, and
models equivalent in the true likelihoods may not be equivalent in approximate likelihoods. Our
asymptotic results can be used as long as the approximate transition densities are “close” enough
to the true transition density satisfying the regularity conditions introduced later.

Suppose we have two misspecified diffusion models M1(θ1) and M2(θ2) with transition densities
pj(t, x, y; θj) and the log-likelihood functions

Lj(θj) = Ln,Δ
j (θj) =

n∑
i=1

log pj(Δ, X(i−1)Δ, XiΔ; θj) (2.5)

of data {XiΔ}n
i=0 conditional on X0 = x0 for j = 1, 2, respectively. We suppress the dependency

of the log-likelihoods on n and Δ (or equivalently T and Δ) for notational simplicity. Our model
selection approach compares two models by the log-likelihood ratio

L1(θ∗1) − L2(θ∗2) =
n∑

i=1

log
p1(Δ, X(i−1)Δ, XiΔ; θ∗1)
p2(Δ, X(i−1)Δ, XiΔ; θ∗2)

, (2.6)

where θ∗j (j = 1, 2) are pseudo-true values. The comparison with the log-likelihood ratio is based
on the KLIC between two probability measures as in Vuong (1989). In general, the KLIC(P, Q)
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from a probability measure P to an equivalent probability measure Q, is defined by the expectation
with respect to the measure P,

KLIC(P, Q) = EP (log(dP/dQ)),

and it is infinite if P and Q are not equivalent. See Csiszár (1967a,b, 1975) for more general
divergence measures.

Although our test is based on the likelihood ratio, the asymptotic behaviors of our test statistics
are different under our new framework. We test for the null hypothesis that two models are
equivalent in the sense that the scaled log-likelihood ratio

1
T

(L1(θ∗1) − L2(θ∗2)) (2.7)

converges to zero in probability as T → ∞, Δ → 0. Let

H0 : plim
T→∞,Δ→0

1
T

(L1(θ∗1) − L2(θ∗2)) = 0, (2.8)

H1 : plim
T→∞,Δ→0

1
T

(L1(θ∗1) − L2(θ∗2)) > 0, (2.9)

H2 : plim
T→∞,Δ→0

1
T

(L1(θ∗1) − L2(θ∗2)) < 0. (2.10)

The null hypothesis H0 is tested against the alternative H1 ∪ H2. Our test is directional; when
M1(θ1) is preferred, the scaled log-likelihood ratio converges to a positive number (H1).

2.2 Asymptotics

We derive the asymptotic results for the log-likelihood ratio L1(θ̂1)−L2(θ̂2), where θ̂j (j = 1, 2) are
the ML estimators, with T → ∞, Δ → 0. We first define the functions that describe the behavior
of the transition densities during a small time interval t.

Definition 2.2 The derivatives of log transition densities

�j(t, x, y) = log pj(t, x, y; θ∗j ) (2.11)

are

�jy(t, x, y) = ∂ log pj(t, x, y; θ∗j )/∂y, (2.12)

�jt(t, x, y) = ∂ log pj(t, x, y; θ∗j )/∂t, (2.13)
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for j = 1, 2. Other derivatives, �jyy(t, x, x), �jyyy(t, x, x), �jyyyy(t, x, x), �jyyt(t, x, x), are defined sim-
ilarly. For j = 1, 2, define

Aj(x) = lim
t→0

{�jy(t, x, x) + t�jyt(t, x, x)}, Bj(x) = lim
t→0

t�jyyy(t, x, x), Cj(x) = lim
t→0

t�jyyyy(t, x, x),

Dj(x) = lim
t→0

{
2�jt(t, x, x) + t�jtt(t, x, x) + (2t)−1

}
, Ej(x) = lim

t→0
{�jyy(t, x, x) + t�jyyt(t, x, x)} ,

for all x ∈ DX .

For simplicity, we assume that drift and diffusion parameters are separable. We write θj =
(αj , βj), where αj and βj are parameter vectors for drift functions μj(·; αj) and diffusion functions
σj(·; βj) for j = 1, 2, respectively, and denote θ∗j = (α∗

j , β
∗
j ).

Let μ0 = μ0(Xt), σ0 = σ0(Xt) and denote μj = μj(Xt; α∗
j ), σj = σj(Xt; β∗

j ), Aj = Aj(Xt), and
their derivatives σjβ = ∂σj(Xt; β∗

j )/∂β, Ajβ = ∂Aj(Xt)/∂β for j = 1, 2. Also Bj , . . . , Ej (j = 1, 2)
are defined likewise.

We show the results in two cases. When models have different diffusion functions (denoted as
Case 1), their superiority is determined by the diffusion functions. When models have identical
diffusion functions (denoted as Case 2), they must be compared by the drift functions because the
pseudo-true values of diffusion function parameters are the same under our asymptotics regardless of
the drift specifications. The main results are in the following theorem. All proofs are in Appendix.

Theorem 2.3 (Asymptotic expansions) (a) Case 1: σ1( · ; β∗
1 ) 	= σ2( · ; β∗

2 ).
If Δ2T → ∞, Δ3T → 0 as T → ∞, Δ → 0, and Assumptions B.1-B.4 are satisfied, then

L1(θ̂1) − L2(θ̂2) = − 1
Δ

∫ T

0

[
log
(

σ1

σ2

)
+

1
2

(
1
σ2

1

− 1
σ2

2

)
σ2

0

]
dt

+
∫ T

0

[
(A1 − A2)μ0 +

(B1 − B2)μ0σ
2
0

2
+

(C1 − C2)σ4
0

8

+
D1 − D2

2
+

(E1 − E2)σ2
0

2
− 1

2

(
1
σ2

1

− 1
σ2

2

)
μ2

0

]
dt + Op

(√
T

Δ

)
.

(b) Case 2: σ1( · ; β∗
1 ) = σ2( · ; β∗

2 ) and μ1( · ; α∗
1) 	= μ2( · ; α∗

2).
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If ΔT 2 → 0 as T → ∞, Δ → 0, and Assumptions B.1-B.4 are satisfied, then

L1(θ̂1) − L2(θ̂2)

=
∫ T

0

[
(A1 − A2)μ0 +

D1 − D2

2
+

(E1 − E2)σ2
0

2

]
dt

+
∫ T

0

(A1 − A2)σ0dWt

−
∫ T

0

σ′
1β(σ2

0 − σ2
1)

σ3
1

dt

(∫ T

0

(σ1σ1ββ′ − 3σ1βσ′
1β)(σ2

0 − σ2
1) − 2σ2

1σ1βσ′
1β

σ4
1

dt

)−1

×∫ T

0

[
(A1β − A2β)μ0 +

D1β − D2β

2
+

(E1β − E2β)σ2
0

2

]
dt + op(

√
T ).

For Case 1, the diffusion functions of the competing models are the most important factor in
the likelihood ratio, and we have the second order term related to both the drift functions and
the approximation methods of transition densities. The leading term of Case 2 depends on the
drift functions and the approximation methods of transition densities as well as the sampling error
of the estimators of diffusion function parameters. See Appendix for the examples of the explicit
expansions for the Euler and Milstein approximations as well as Aı̈t-Sahalia’s Hermite expansion
approximation.

In Case 1, the diffusion functions σ1(β∗
1 ) and σ2(β∗

2 ) of models are compared at their pseudo-
true values β∗

1 and β∗
2 as the leading criterion. The diffusion functions dominate as data frequencies

become higher. Moreover, β∗
1 and β∗

2 do not depend on drift function specifications, which gives
some insights to the fact that estimated diffusion parameters do not usually depend much on drift
function specifications for high frequency data. Therefore, a model with a good diffusion function
is preferred no matter how bad its drift function is.

If we have

plim
T→∞,Δ→0

Δ
T

(L1(θ̂1) − L2(θ̂2)) = −E
[

log
(

σ1

σ2

)
+

1
2

(
1
σ2

1

− 1
σ2

2

)
σ2

0

]
(2.14)

= 0, (2.15)

the diffusion functions are said to be equivalent. When the models have different but equivalent
diffusion functions in our criterion, the second order asymptotic component becomes important.
The second order term is related to drift functions, and having a good drift function pays off only
then. The relative size of the leading and second order terms depends on the sampling frequency.
For high frequency data, the informative second order term can be too small compared to the
leading order term which does not have any information on the superiority of a model when the
diffusion functions are equivalent. We can easily miss a good drift specification in this situation.
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This indicates that a failure to reject the null hypothesis may be from having a sampling frequency
too high to consider the drift functions.

Another implication of the theorem is that the error from using the approximate transition
densities rather than the true transition densities can not be ignored even asymptotically. When
the models are equivalent in terms of the diffusion functions, the superiority of a model depends
on both the drift specification and the approximation methods, because Aj , . . . , Ej depend on the
choice of the approximate likelihoods. Since the choice of the approximate transition densities leads
to a new model selection criterion, the null hypothesis must imply that the models are equivalent
under the particular approximation method actually used for estimation.

In Case 2, since the competing models have the identical diffusion functions, the model selection
is based on the drift functions only. This is because the pseudo-true values β∗

1 and β∗
2 depend on

the diffusion functions only. The evaluation and comparison of the models crucially depend on the
sampling time span. High frequency data would not help estimate the drift parameters nor evaluate
their ranking. Therefore when the sampling span is short, it is quite challenging to distinguish these
models. Moreover, the approximation methods for transition densities are always important since
the functions that depend on the approximation methods appear in the primary selection criterion.

For both Case 1 and 2, our model selection criterion using approximate transition densities be-
comes equivalent to the one using the true transition densities if the approximations are sufficiently
accurate. The following corollary gives a sufficient condition that an approximate transition density
should satisfy to make our testing procedure with approximate transition densities asymptotically
equivalent to the test using the true transition density.

Corollary 2.4 (Equivalence condition) Let A0
j , B0

j , C0
j , D0

j and E0
j be defined as in Definition

2.2 using the true transition density of Mj(θj). If

E
[
(Aj − A0

j)μ0 +
(Bj − B0

j )μ0σ
2
0

2
+

(Cj − C0
j )σ4

0

8
+

Dj − D0
j

2
+

(Ej − E0
j )σ2

0

2

]
= 0, (2.16)

then the approximate likelihood Lj(θj) gives the asymptotically equivalent model selection criterion
to the true likelihood L0

j(θj), which implies

1
T

(
Lj(θ̂j) − L0

j(θ̂
0
j )
) p→ 0

as T → ∞ and Δ → 0 for both Case 1 and Case 2, where θ̂j and θ̂0
j are the ML esitmators from

Lj and L0
j , respectively.

For example, the Euler or the Hermite expansion approximations define the same model selection
criterion as the true transition density for the Ornstein-Uhlenbeck process (see Appendix for the
proof).
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The following theorem gives the asymptotic distribution under the null hypothesis H0 that
competing models are equivalent.

Theorem 2.5 (Asymptotic null distribution) (a) Case 1: σ1( · ; β∗
1 ) 	= σ2( · ; β∗

2 ).
If Δ2T → ∞, Δ3T → 0 as T → ∞, Δ → 0, and Assumptions B.1-B.4 are satisfied, then under the
null H0 in (2.8),

Δ√
T

(
L1(θ̂1) − L2(θ̂2)

) d→ N
(
0,EG2

1

)
,

where

G1(x) = σ0(x)s0(x)
∫ x

x0

[
log
(

σ1(v)
σ2(v)

)
+

1
2

(
1

σ2
1(v)

− 1
σ2

2(v)

)
σ2

0(v)
]
m0(v)dv,

and the derivative of scale function s0(x) and the speed density m0(x) are given as follows:

s0(x) = exp
(
−
∫ x

x0

2μ0(v)
σ2

0(v)
dv

)
, (2.17)

m0(x) =
1

σ2
0(x)s0(x)

for x0 ∈ DX .
(b) Case 2: σ1( · ; β∗

1 ) = σ2( · ; β∗
2 ) and μ1( · ; α∗

1) 	= μ2( · ; α∗
2).

If ΔT 2 → 0 as T → ∞, Δ → 0, and Assumptions B.1-B.4 are satisfied, then under the null H0 in
(2.8),

1√
T

(
L1(θ̂1) − L2(θ̂2)

) d→ N
(
0, C′ΣC

)
,

where

Σ = E
[(
Ga,G′

b

)′(Ga,G′
b

)]
,

C =
(

1, E
[
(A1β − A2β)μ0 +

D1β − D2β

2
+

(E1β − E2β)σ2
0

2

]′
×[

E
(σ1σ1ββ′ − 3σ1βσ′

1β)(σ2
0 − σ2

1) − 2σ2
1σ1βσ′

1β

σ4
1

]−1)′
,

10



with

Ga(x) = σ0(x)s0(x)
∫ x

x0

[(
A1(v) − A2(v)

)
μ0(v) +

D1(v) − D2(v)
2

+

(
E1(v) − E2(v)

)
σ2

0(v)
2

]
m0(v)dv

−
(
A1(x) − A2(x)

)
σ0(x),

Gb(x) = σ0(x)s0(x)
∫ x

x0

σ1β(v)
(
σ2

0(v) − σ2
1(v)

)
σ3

1(v)
m0(v)dv

for x0 ∈ DX in (2.17).

We also derive the asymptotic local power curves.

Theorem 2.6 (Local asymptotic power) (a) Case 1: σ1( · ; β∗
1 ) 	= σ2( · ; β∗

2).
Let Δ2T → ∞, Δ3T → 0 as T → ∞, Δ → 0, and Assumptions B.1-B.4 are satisfied. Let the local
alternative be

E
[

log
(

σ1

σ2

)
+

1
2

(
1
σ2

1

− 1
σ2

2

)
σ2

0

]
= − δ1√

T
and

E
[
(A1 − A2)μ0 +

(B1 − B2)μ0σ
2
0

2
+

(C1 − C2)σ4
0

8

+
D1 − D2

2
+

(E1 − E2)σ2
0

2
− 1

2

(
1
σ2

1

− 1
σ2

2

)
μ2

0

]
=

δ2

Δ
√

T

for some δ1, δ2 ∈ R. Then we have

Δ√
T

(
L1(θ̂1) − L2(θ̂2)

) d→ N
(
δ,EG2

1

)
,

where δ = δ1 + δ2 and G1 is defined in Theorem 2.5. The asymptotic power function Pα(δ) for the
two-sided test with level α is given by

Pα(δ) = 2 − Φ
(

zα/2 −
δ√
EG2

1

)
− Φ

(
zα/2 +

δ√
EG2

1

)
,

where Φ and zα/2 are the cdf and the (1−α/2) quantile of the standard normal distribution respec-
tively.
(b) Case 2: σ1( · ; β∗

1 ) = σ2( · ; β∗
2 ) and μ1( · ; α∗

1) 	= μ2( · ; α∗
2).

Let ΔT 2 → 0 as T → ∞, Δ → 0, and Assumptions B.1-B.4 are satisfied. Let the local alternative
be

E
[
(A1 − A2)μ0 +

D1 − D2

2
+

(E1 − E2)σ2
0

2

]
=

δ√
T

.
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Then we have

1√
T

(
L1(θ̂1) − L2(θ̂2)

) d→ N
(
δ, C′ΣC

)
,

where C and Σ are defined in Theorem 2.5, and the asymptotic power function Pα(δ) for the two-
sided test with level α is

Pα(δ) = 2 − Φ
(

zα/2 −
δ√

C′ΣC

)
− Φ

(
zα/2 +

δ√
C′ΣC

)
.

In Case 1, as discussed earlier, when the diffusion functions are equivalent, we must compare
drift functions. The information on drift functions accumulates only if we sample data longer,
and the test has low, or potentially no power. A large number of observations would not help in
this case. To have power against a superior drift function, we must require Δ

√
T → ∞. The long

sampling span T ensures the signal from the second order term dominates the leading noise term
asymptotically.

In practice, we would reject the null easily if high frequency data are available with a moderate
sampling span, since diffusion functions of models are not generally equivalent. Even if the highest
frequency data available can not reject the null, we can hope that the models may be ranked
by the drift functions using an infrequent sampling. But the infrequent sampling usually reduces
the number of observations and can deteriorate the accuracy of approximate transition densities.
We also suggest a direct comparison using an alternative selection criterion, which involves drift
functions only, may be preferred to the log-likelihood ratios in this condition.

In Case 2, only T matters. The likelihood ratio does not carry much information to distinguish
models when T is short, even if the number of observations is large. Also since diffusion functions
are not useful, estimating their parameters only adds sampling errors in the criterion. Therefore
we may try to compare the drift functions directly to improve the power of the test.

2.3 Test Statistics and Sampling Distributions

We consider both asymptotically pivotal and non-pivotal test statistics for comparison, and use
different asymptotic approximations to their sampling distributions.

• Log-likelihood ratio (non-pivotal): we define the test statistic

τT,Δ =
T 1/2

κ(T, Δ)
(L1(θ̂1) − L2(θ̂2)), (2.18)

where θ̂j (j = 1, 2) are the ML estimators, and κ(T, Δ) is the scaling factor. As shown in the
previous section, the proper scaling factor depends on whether the competing models have
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the same diffusion functions or not. We have κ(T, Δ) = T/Δ = n for Case 1, and κ(T, Δ) = T

for Case 2.

• Log-likelihood ratio normalized by the HAC variance estimator: let

ûi = log
p1(Δ, X(i−1)Δ, XiΔ; θ̂1)

p2(Δ, X(i−1)Δ, XiΔ; θ̂2)
, (2.19)

and

ū = n−1
n∑

i=1

ûi. (2.20)

Then

L1(θ̂1) − L2(θ̂2) =
n∑

i=1

ûi, (2.21)

and the test statistic tn for both Case 1 and Case 2 is given by

tn =
n−1/2(L1(θ̂1) − L2(θ̂2))

sHAC
, (2.22)

where

s2
HAC =

n−1∑
l=1−n

k

(
lΔ
M

)
γ̂(lΔ) (2.23)

k(x) is a kernel function, 0 < M ≤ T is a bandwidth parameter such that M/T → b ∈ (0, 1]
as T → ∞, and

γ̂(lΔ) =
1
n

n∑
i=|l|+1

(ûi − ū)(ûi−|l| − ū). (2.24)

We are using the fixed-b approach of Kiefer and Vogelsang (2005), and the limiting distribu-
tion of tn is derived under a high level assumption given below.

The normalized statistic tn becomes the same form for both Case 1 and Case 2. Although the
form also coincides with the test statistics of Choi and Kiefer (2008), which is developed with a fixed
sampling interval, the implications are different; the pseudo-true values, the order of L1(θ∗1)−L2(θ∗2),
and the long-run variance of the numerator of the test statistics are different from the case with
a fixed sampling interval, and they also depend on whether the test is in Case 1 or Case 2 in our
framework. The normalized test statistics have the advantage of the convenience of having the
same form regardless of Case 1, Case 2, or the case of a fixed sampling interval. The fundamental
difference of our approach from the conventional methods is in the notion of the equivalence of
models. Our approach shows the equivalence should be understood differently when sampling
frequencies are high.
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Definition 2.7 (Kiefer and Vogelsang (2005), p. 1141) Let W̃i(r) be an i-dimensional Brow-
nian bridge W̃i(r) = Wi(r)−rWi(1), and Wi(r) an i-dimensional standard Brownian motion. With
a kernel function k(x), let the (i × i) random matrix Qi(b) be defined as follows.
(a) if k(x) is twice continuously differentiable everywhere,

Qi(b) = −
∫ 1

0

∫ 1

0

1
b2

k′′
(

r − s

b

)
W̃i(r)W̃i(s)′drds, (2.25)

(b) if k(x) is continuous, k(x) = 0 for |x| ≥ 1, and k(x) is twice continuously differentiable every-
where except for |x| = 1,

Qi(b) = −
∫ ∫

|r−s|<b

1
b2

k′′
(

r − s

b

)
W̃i(r)W̃i(s)′drds (2.26)

+
k′(1)

b

∫ 1−b

0

(
W̃i(r + b)W̃i(r)′ + W̃i(r)W̃i(r + b)′

)
dr, (2.27)

where k′(1) = limh→0[(k(1)−k(1−h))/h], i.e., k′(1) is the derivative of k(x) from the left at x = 1,

(c) if k(x) is the Bartlett kernel,

Qi(b) =
2
b

∫ 1

0

W̃i(r)W̃i(r)′dr (2.28)

− 1
b

∫ 1−b

0

(
W̃i(r + b)W̃i(r)′ + W̃i(r)W̃i(r + b)′

)
dr. (2.29)

Assumption 2.8 Let

ui = log
p1(Δ, X(i−1)Δ, XiΔ; θ∗1)
p2(Δ, X(i−1)Δ, XiΔ; θ∗2)

, (2.30)

and define the partial sum process

g[rn] =
T 1/2

κ(T, Δ)

[rn]∑
i=1

ui, (2.31)

where κ(T, Δ) = T/Δ = n for Case 1, and κ(T, Δ) = T for Case 2.
(a) The partial sum satisfies the functional central limit theorem, i.e.

g[rn] ⇒ ωW (r), (2.32)

where the long-run variances ω2 = EG2
1 for Case 1 and ω2 = C′ΣC for Case 2 (see Theorem 2.5

for their definitions), and W (r) is the standard Brownian motion defined on C[0, 1], and
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(b)

T 1/2

κ(T, Δ)

[rn]∑
i=1

(ûi − ui)
p→ 0, (2.33)

uniformly in r ∈ [0, 1] as T → ∞, Δ → 0.

Theorem 2.9 Let M/T → b ∈ (0, 1]. If the assumptions in Theorem 2.5 and Assumption 2.8 are
satisfied, then we have, as T → ∞, Δ → 0,

(a) for Case 1,

tn =
Δ√
T

(L1(θ̂1) − L2(θ̂2))√
Δ
∑n−1

l=1−n k
(

lΔ
M

)
γ̂(lΔ)

(2.34)

=
n−1/2(L1(θ̂1) − L2(θ̂2))

sHAC
⇒ W (1)√

Q1(b)
, (2.35)

and
(b) for Case 2,

tn =
1√
T

(L1(θ̂1) − L2(θ̂2))√
Δ−1

∑n−1
l=1−n k

(
lΔ
M

)
γ̂(lΔ)

(2.36)

=
n−1/2(L1(θ̂1) − L2(θ̂2))

sHAC
⇒ W (1)√

Q1(b)
, (2.37)

where the random function Q1(b), defined in Definition 2.7, is independent with W (1), but depends
on the kernel function k(x).

The critical values of the fixed-b asymptotic approximations must be obtained from simulations.
Table 1 in Kiefer and Vogelsang (2005) tabulates them for popular kernel functions.

We compare the performance of the approximations to the sampling distributions of the above
test statistics using the subsampling (Politis, Romano, and Wolf (1999)) and the nonparametric
block bootstrap methods for τT,Δ and tn. For the asymptotically pivotal test tn, we also consider
the standard normal and the fixed-b approximations. In the all examples in this paper, we use the
Bartlett kernel and try three different bandwidths for comparison. We explain the subsampling and
the block bootstrap methods in detail.

2.3.1 Subsampling method

We calculate the subsample test statistics τs
T,Δ, tsn (s = 1, . . . , ns) of the same form as τT,Δ, tn from

ns blocks of subsamples of size S. Let Ĉn and V̂n be the mean and the variance of subsample
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statistics (i.e. Ĉn = n−1
s

∑ns

s=1 τs
T,Δ and V̂n = (ns − 1)−1

∑ns

s=1(τ
s
T,Δ − Ĉn)2 for τT,Δ). We use two

different asymptotic approximations to the sampling distributions of τT,Δ, tn to get critical values.

1. Use N(Ĉn, V̂n).

2. Use the empirical distributions of τs
T,Δ, tsn.

2.3.2 Block bootstrap method

We use the following algorithm.

1. Randomly select nB blocks of consecutive observations of the length l = n/nB to construct
the bootstrap samples {X∗

iΔ}n
i=1.

2. Calculate the bootstrap estimators θ̃1, θ̃2, the log-likelihood ratio (L∗
1(θ̃1)−L∗

2(θ̃2)), the statis-
tic τ∗

T,Δ, and s2∗
HAC from {X∗

iΔ}n
i=1.

3. Calculate the bootstrap test statistics,

τb
T,Δ = τ∗

T,Δ − τT,Δ, (2.38)

tbn =
n−1/2((L∗

1(θ̃1) − L∗
2(θ̃2)) − (L1(θ̂1) − L2(θ̂2))
s∗HAC

. (2.39)

4. Repeat 1 ∼ 3 for b = 1, . . . , B.

5. Instead of using τb
T,Δ and tbn directly to calculate critical values, we use the empirical dis-

tributions of τb
T,Δ − B−1

∑B
b=1 τb

T,Δ, and tbn − B−1
∑B

b=1 tbn. The centering of the bootstrap
statistics by their sample means is asymptotically negligible, but we found it help get more
accurate sizes for our simulation examples. But we believe using the usual empirical distribu-
tion is also a reasonable choice. We use the equal-tailed percentile or percentile-t bootstrap
method.

3 Finite Sample Properties

3.1 Four Examples

We consider 4 examples shown in Table 1 for Case 1 and 2. For all examples, competing models M1

and M2 are nonnested and misspecified, and the true processes M0 are chosen to make M1 and M2

equivalent to satisfy the null hypothesis when the models use the Milstein approximate transition
densities. Consequently, we must use the Milstein approximation for estimation. The models in
Case 1 have different diffusion functions. For Case 2, the models have identical diffusion functions.

Table 1 is about here.
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3.2 Size of the Tests

Table 2 shows the sizes of our test statistics (two-sided, 5% level).

Table 2 is about here.

For each example, we generated T = 5 and T = 40 years of data sampled at the daily frequency
(Δ = 1/250). We calculate the actual sizes of the tests from 1, 000 simulation iterations, and
compare the performance of τT,Δ and tn.The statistics tn uses the Bartlett kernel with three different
bandwidths. The fixed-b approach does not provide an optimal choice of bandwidths. Although any
bandwidth parameter should work as long as M/T → b is fixed, we choose the optimal bandwidth
(M = cT 1/3) of Andrews (1991) as an example. Note that the bandwidth parameter does not have
the optimality property under the fixed-b approach. We choose b = M/T = 0.0855 for T = 5 and
b = 0.0213 for T = 40 by setting c = 0.25 in Andrews’s method. Then we try doubling (b = 0.171
for T = 5, and b = 0.0427 for T = 40) and tripling (b = 0.256 for T = 5, and b = 0.0641 for
T = 40) the bandwidth for comparison. Let tn(M) be the statistics tn with a bandwidth parameter
M (years). The chosen bandwidths for T = 5 are M = 0.43, 0.85, 1.28 years, and for T = 40,
M = 0.85, 1.7, 2.56 years.

We approximate the sampling distributions of the test statistics with the four methods described
earlier. Specifically, “Sub N” implies the subsampling approximation by the fitted normal distribu-
tion with the sample mean and variance of the subsample statistics, and “Sub Emp” means that
we have used the empirical distribution of the subsample statistics directly.

The subsample method uses ns = 199 sub-blocks of consecutive observations of the size equal
to S = T 0.4 = 1.90 years (38%) for T = 5 and S = T 0.7 = 13.23 years (33%) for T = 40. The
block bootstrap method is based on B = 399 bootstrap repetitions, and each repetition uses the
bootstrap samples constructed from nB = 25 blocks of equal size (or a block length equal to 1/25
of the total number of observations). The choice of the sub-block size for both the bootstrap and
the subsampling can affect the results. In unreported experiments, we found that the effect of
choosing a different sub-block size is larger for the subsampling method than for the bootstrap
method. Although the effect is mild for the bootstrap method, it is not negligible. The optimal
choice of a block size is a difficult problem and we do not consider it here. See, for example,
Politis, Romano, and Wolf (1999) and Lahiri (2003) for further discussion on this topic.

Overall, the pivotal tests tn perform better than τT,Δ. The test statistic τT,Δ shows serious
over-rejections in Case 1, and under-rejections in Case 2. In Case 1, the block bootstrap seems
to work better than or similar to the subsampling. The bootstrap method is better for the non-
pivotal statistic τT,Δ. The results from the standard normal approximations can be good (Example
1, T = 40) or bad (Example 1,2, T = 5 and Example 2, T = 40), they depend on the HAC
bandwidths closely. For Case 2, the block bootstrap is better (especially in Example 4) than the
subsampling method for T = 5, but the subsampling is comparable to the bootstrap for T = 40.
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The standard normal approximation shows good performance when the HAC bandwidth is chosen
properly, but performs poorly in general. The fixed-b approach performs well in Example 1 and
3. It is better when the bandwidth parameter is large. The bootstrap method seems to be similar
to the fixed-b method in Example 1 and 3. In Example 2 and 4, the bootstrap is better than the
fixed-b approach except for T = 5 in Example 2.

The result can improve as the sampling period is longer (Example 1 and 3), but it may not
improve much (Example 2 and 4). This shows that we may need a very long period of data to get
reliable approximations to the sampling distributions of the test statistics.

In summary, approximating the sampling distributions of the test statistics can be difficult.
The asymptotically pivotal tests is more reliable than the non-pivotal test. The block bootstrap
looks like a better choice for short sampling periods, and the subsampling improves as the sampling
period becomes longer. The standard normal and the fixed-b approximations can be a better
or worse choice than the bootstrap or the subsampling depending on the examples. The fixed-b
approximation is better than the standard normal approximation.

3.3 Power of the Tests

We calculate size-corrected power using the modified true processes given in Table 3.

Table 3 is about here.

Size corrected critical values (equal tailed, 5% level) are from the 2.5% and 97.5% quantiles of
5, 000 repetitions of simulations under the null hypothesis. Table 4 shows the power of the tests
from 5, 000 simulation iterations.

Table 4 is about here.

In most examples, the pivotal tests tn have better power than the non-pivotal test τT,Δ. In Case
1, the models are distinguished by the diffusion functions and the power improves significantly when
sampling periods increase from T = 5 to T = 40, and the number of observations is from 1, 250 to
10, 000. In Case 2, the models are compared by the drift functions only, the tests have low power
when the sampling period is short (T = 5). Especially, Example 3 has little power with T = 5 years
of data even if M1 is the correct model. For T = 40 (n = 10, 000), the power improves. It shows
how difficult to distinguish models in Case 2, and the number of observations may not be a good
indicator of the power of the test. Diffusion models with the same diffusion functions are essentially
very similar.

18



4 Applications

4.1 Spot Interest Rates

Many popular spot rate models such as Vasicek (Vasicek (1977)), CIR (Cox, Ingersoll Jr, and Ross
(1985)), DK (Duffie and Kan (1996)), CKLS (Chan, Karolyi, Longstaff, and Sanders (1992)), and
AG (Ahn and Gao (1999)) models perform unsatisfactorily in practice. They are shown to be
rejected in specification tests (see, for example, Aı̈t-Sahalia (1996) and Hong and Li (2005)). Es-
pecially, Hong and Li (2005) found that all the models they considered indicate serious misspecifi-
cation. Our approach provides a formal statistical testing for possible superiority among them.

Since the spot interest rates are not observed in practice, they are usually approximated with
securities with short maturities. We use the annualized 1-month Eurodollar deposit (London) bid
rates from 1/1/1971 to 12/31/2007 (source: Federal Reserve Statistical Release,
http://www.federalreserve.gov/releases/h15/data/Business day/H15 ED M1.txt). We do
not consider the “weekend” effects; Fridays are followed by Mondays. The sampling interval Δ is
approximately set to be T/n = 0.00393, where T = 37 years is the sampling period, and n = 9, 411
is the total number of observations.

We could have used the daily over-night federal funds rates or the 1-week Eurodollar rates, but
securities with very short maturities tend to have the market microstructure effects, and need to be
filtered (see Hamilton (1996) for a filtering and Aı̈t-Sahalia (1996) for a discussion). Also, Duffee
(1996) advocates the use of Eurodollar rates because of the idiosyncratic variations of the Treasury
bill yields.

Figure 2 shows the sample path of the annualized daily 1-month Eurodollar deposit rates. The
mean and the standard deviation are 0.06798 and 0.03556 respectively.

Figure 2 is about here.

The candidate models are the AG (Ahn and Gao) model (Inverse Feller process)

M1 : drt = κ(μ − rt)rtdt + σr
3/2
t dWt, (4.1)

and the CIR (Feller’s square root process) model

M2 : drt = κ(μ − rt)dt + σ
√

rt dWt. (4.2)

We choose these models since they performed similarly in the misspecification test of Hong and Li
(2005). The estimated models from the MLE with the Milstein approximate transition densities
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are

M1 : drt = 3.365 (0.0947 − rt)rtdt + 1.9246 r
3/2
t dWt (AG), (4.3)

M2 : drt = 0.673 (0.0671 − rt)dt + 0.1495
√

rt dWt (CIR), (4.4)

with estimated log-likelihoods l1 = 46, 630.07 and l2 = 43, 950.82 respectively.
Table 5 shows the results of the model selection tests. As in the Monte Carlo study in the

previous section, we used four test statistics τT,Δ, tn(0.83), tn(1.67), and tn(2.50). The statistic
τT,Δ is the non-pivotal test based on the log-likelihood ratio, and tn(M) is using the HAC variance
estimator with a bandwidth parameter M . The sampling distributions of the test statistics are
approximated by the subsampling, the block bootstrap, and the standard normal distribution as
described in the previous section. For the subsampling, we used 199 blocks of the subsamples of
size T 0.7 = 12.5 years, and for the block bootstrap, we used 25 blocks (1.48 years for each block)
and 799 bootstrap repetitions to get the bootstrap critical values. “AG” or “CIR” represents the
superiority of the respective model; “0” means failing to reject.

Table 5 is about here.

We have some evidence that AG model is better when the sampling distributions of test statistics
are approximated by the standard normal distribution or the fixed-b approach, but they are not
rejected when the subsampling or the bootstrap method is used with the asymptotically pivotal
statistics. We note that τT,Δ rejects except for the bootstrap method, but due to the unstable
size performance from our simulation study, we weigh the results from the HAC statistics more.
Overall, the information from the data is not enough to tell the superiority of the AG model.

4.2 Exchange Rates (Euro-US Dollar)

We use the daily (measured at 2:15 pm (C.E.T.), business days only) spot Euro-US dollar exchange
rates from 1999.1 ∼ 2008.12 (T = 10 years, n = 2, 560, Δ = 0.003906) from European Central
Bank’s (ECB) Statistical Data Warehouse.

Figure 3 shows the sample path of the exchange rates. The mean and the standard deviation
are 1.155 and 0.1934 respectively.

Figure 3 is about here.

We choose the AG and CIR models again to compare. The estimated models using the MLE
with the Milstein approximate transition densities are
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M1 : dXt = 0.0727 (1.475 − Xt)Xtdt + 0.09925 X
3/2
t dWt (AG) (4.5)

M2 : dXt = 0.108 (1.352 − Xt)dt + 0.1107
√

XtdWt (CIR) (4.6)

We used the same setup for the subsample and the block bootstrap as for the spot rate model
selection (5.01 years of the sub-block size, 0.4 years for the bootstrap block size). The HAC tests
are tn(0.54), tn(1.08), tn(1.62). The results are in Table 5. Although the CIR model has a higher
likelihood value, we do not find significant evidence of the superiority compared to the AG model.

5 Conclusion

We proposed a likelihood ratio based model selection test for high frequency data from a diffusion
process. Generally, the model selection test can rank two competing models by the proximity of
the diffusion functions of the models to the true diffusion functions. Our results show that more
observations may help to select a better model, but what we really need is a long enough sampling
period to evaluate and compare the models. This insight becomes critical when the candidate
models have the same diffusion functions (i.e. Case 2 in our paper); the number of observations
does not matter, and only the sampling period is useful.

Our Monte Carlo study shows that the accurate approximation to the sampling distributions of
the test statistics is challenging. We advise to use pivotal statistics with resampling methods such
as the block bootstrap or the subsampling method.

The applications of our tests to the spot rate and exchange rate models show that Ahn and
Gao’s model and the CIR model are difficult to distinguish, although Ahn and Gao’s model performs
slightly better for the spot rates and the CIR model is better for the exchange rates.

Our new asymptotics gives new insights for high frequency data sampled over a reasonably long
horizon. Although the new asymptotics has clear advantages, the standard procedures developed
under a fixed sampling interval or a fixed sampling period must be carefully studied again. For
example, the asymptotic properties of the block bootstrap methods need to be investigated under
our new asymptotics.

We conclude with future research topics related to this paper. We are working on the extension of
our results to nonstationary processes and multivariate diffusions. Stationary multivariate diffusions
would have similar results to the current paper, but studying nonstationary processes is expected
to be difficult because the asymptotic behavior of estimators and test statistics largely depends on
true processes.
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Appendices

A Examples

We give the explicit expansions in Theorem 2.3 for the Euler and Milstein approximations as well
as Aı̈t-Sahalia’s Hermite expansion approximation in the following examples.

Example A.1 (Case 1) (a) Euler approximation:

Aj =
μj

σ2
j

, Dj = −
μ2

j

σ2
j

, (A.1)

Bj = 0, Cj = 0, Ej = 0

for j = 1, 2, thus

L1(θ̂1) − L2(θ̂2) = − 1
Δ

∫ T

0

[
log
(

σ1

σ2

)
+

1
2

(
1
σ2

1

− 1
σ2

2

)
σ2

0

]
dt

− 1
2

∫ T

0

((
μ0 − μ1

)2
σ2

1

−
(
μ0 − μ2

)2
σ2

2

)
dt + Op

(√
T

Δ

)
.

(b) Milstein approximation:

Aj =
2μj − 3σjσ·j

2σ2
j

, Bj =
3σ·j
σ3

j

, Cj = −
15σ·2j
σ4

j

,

Dj = −
4μ2

j − 12μjσjσ·j + 5σ2
j σ·2j

4σ2
j

, Ej = −
σ·j(6μj − 7σjσ·j)

2σ3
j

for j = 1, 2, where σ·j = σ·j(Xt, β
∗
j ) and σ·j(x, β∗

j ) = ∂σj(x, β∗
j )/∂x, thus

L1(θ̂1) − L2(θ̂2)

= − 1
Δ

∫ T

0

[
log
(

σ1

σ2

)
+

1
2

(
1
σ2

1

− 1
σ2

2

)
σ2

0

]
dt

−
∫ T

0

[
1
2

((
μ0 − μ1

)2
σ2

1

−
(
μ0 − μ2

)2
σ2

2

)
− 3

2

(
σ·1(σ2

1 − σ2
0)(μ1 − μ0)
σ3

1

− σ·2(σ2
2 − σ2

0)(μ2 − μ0)
σ3

2

)
+

5
8

(
σ·21 (σ2

1 − σ2
0)2

σ4
1

− σ·22 (σ2
2 − σ2

0)2

σ4
2

)
− 1

2

(
σ·21
σ2

1

− σ·22
σ2

2

)
σ2

0

]
dt + Op

(√
T

Δ

)
.
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(c) Hermite expansion approximation (Aı̈t-Sahalia (2002) with K = 1):

Aj =
μj

σ2
j

−
3σ·j
2σj

, Bj =
3σ·j
σ3

j

, Cj =
4σ··j
σ3

j

−
11σ·2j
σ4

j

,

Dj = −μ·j −
(

μj

σj
−

σ·j
2

)2

+
μjσ·j
σj

+
σjσ··j

2
, Ej =

μ·j
σ2

j

−
2μjσ·j

σ3
j

+
3σ·2j
2σ2

j

−
3σ··j
2σj

for j = 1, 2, where μ·j = μ·j(Xt, α
∗
j ) and μ·j(x, α∗

j ) = ∂μj(x, α∗
j )/∂x, σ·j = σ·j(Xt, β

∗
j ) and σ·j(x, β∗

j ) =
∂σj(x, β∗

j )/∂x, and σ··j = σ··j (Xt, β
∗
j ) and σ··j (x, β∗

j ) = ∂2σj(x, β∗
j )/∂x2, thus

L1(θ̂1) − L2(θ̂2)

= − 1
Δ

∫ T

0

[
log
(

σ1

σ2

)
+

1
2

(
1
σ2

1

− 1
σ2

2

)
σ2

0

]
dt

−
∫ T

0

[
1
2

((
μ0 − μ1

)2
σ2

1

−
(
μ0 − μ2

)2
σ2

2

)
+

3
2

(
σ·1
σ1

− σ·2
σ2

)
μ0 −

3
2

(
σ·1
σ3

1

− σ·2
σ3

2

)
μ0σ

2
0

−
(

σ2
0

σ2
1

− 1
)(

μ·1
2

− μ1σ·1
σ1

)
+
(

σ2
0

σ2
2

− 1
)(

μ·2
2

− μ2σ·2
σ2

)
− 2

3

(
σ·21
σ4

1

− σ·22
σ4

2

)
σ4

0

+
σ·21
8

(
3σ2

0

σ2
1

− 1
)2

− σ·22
8

(
3σ2

0

σ2
2

− 1
)2

− 13
48

(
σ1σ··1
σ4

1

− σ2σ··2
σ4

2

)
σ4

0

− σ1σ··1
2

(
σ2

0

σ2
1

− 2
)2

+
σ2σ··2

2

(
σ2

0

σ2
2

− 2
)2]

dt + Op

(√
T

Δ

)
.

Example A.2 (Case 2) (a) Euler approximation: Aj , . . . , Ej are in (A.1), and

Ajβ = −2μjσjβ

σ3
j

, Djβ =
2μ2

jσjβ

σ3
j

, Ejβ = 0

for j = 1, 2, thus

L1(θ̂1) − L2(θ̂2)

= −1
2

∫ T

0

(μ0 − μ1)2 − (μ0 − μ2)2

σ2
1

dt +
∫ T

0

σ0(μ1 − μ2)
σ2

1

dWt

+
∫ T

0

σ′
1β(σ2

0 − σ2
1)

σ3
1

dt

(∫ T

0

(σ1σ1ββ′ − 3σ1βσ′
1β)(σ2

0 − σ2
1) − 2σ2

1σ1βσ′
1β

σ4
1

dt

)−1

×∫ T

0

2σ1β

(
(μ0 − μ1)2 − (μ0 − μ2)2

)
σ3

1

dt + op(
√

T ).
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(b) Milstein approximation:

Ajβ = −2μjσjβ

σ3
j

+
3σjσ·jσ1β

2σ3
j

−
3σ·jβ

2σj
, Djβ =

2μ2
jσjβ

σ3
j

−
5σ·jσ·jβ

2
−

3μjσ·jσjβ

σ2
j

+
3μjσ·jβ

σj
,

Ejβ =
9μjσ·jσjβ

σ4
j

−
3μjσ·jβ

σ3
j

−
7σ·2j σjβ

σ3
j

+
7σ·jσ·jβ

σ2
j

for j = 1, 2, where σ·jβ = σ·jβ(Xt, β
∗
j ) and σ·jβ(x, β∗

j ) = ∂σjβ(x, β∗
j )/∂x, thus

L1(θ̂1) − L2(θ̂2)

= −1
2

∫ T

0

(
(μ0 − μ1)2 − (μ0 − μ2)2

σ2
1

− 3σ·1(σ2
1 − σ2)(μ1 − μ2)

σ3
1

)
dt

+
∫ T

0

σ0(μ1 − μ2)
σ2

1

dWt

+
∫ T

0

σ′
1β(σ2

0 − σ2
1)

σ3
1

dt

(∫ T

0

(σ1σ1ββ′ − 3σ1βσ′
1β)(σ2

0 − σ2
1) − 2σ2

1σ1βσ′
1β

σ4
1

dt

)−1

×∫ T

0

2
[
σ1β

(
(μ0 − μ1)2 − (μ0 − μ2)2

)
σ3

1

+
(3σ·1β

2σ1
+

9σ·1σ1β − 3σ1σ·1β

2σ4
1

σ2
0

)
(μ1 − μ2)

]
dt

+ op(
√

T ).

(c) Hermite expansion approximation (Aı̈t-Sahalia (2002) with K = 1):

Ajβ = −2μjσjβ

σ3
j

+
3σjσ·jσ1β

2σ3
j

−
3σ·jβ

2σj
,

Djβ =
2σjβμ2

j

σ3
j

−
2σjβσ·jμj

σ2
j

+
2σ·jβμj

σj
− 1

2
σ·jσ·jβ +

σjβσ··j
2

+
σjσ··jβ

2
,

Ejβ = −
3σjβσ·2j

σ3
j

+
6μjσjβσ·j

σ4
j

+
3σ·jβσ·j

σ2
j

−
2σjβμ·j

σ3
j

−
2μjσ·jβ

σ3
j

+
3σjβσ··j

2σ2
j

−
3σ··jβ

2σj

for j = 1, 2, where σ·jβ = σ·jβ(Xt, β
∗
j ) and σ·jβ(x, β∗

j ) = ∂σjβ(x, β∗
j )/∂x, and σ··jβ = σ··jβ(Xt, β

∗
j ) and
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σ··jβ(x, β∗
j ) = ∂2σjβ(x, β∗

j )/∂x2, thus

L1(θ̂1) − L2(θ̂2)

= −1
2

∫ T

0

(
(μ0 − μ1)2 − (μ0 − μ2)2

σ2
1

−
(

σ2
0

σ2
1

− 1
)(

1 − 2σ·1
σ1

)
(μ1 − μ2)

)
dt

+
∫ T

0

σ0(μ1 − μ2)
σ2

1

dWt

+
∫ T

0

σ′
1β(σ2

0 − σ2
1)

σ3
1

dt

(∫ T

0

(σ1σ1ββ′ − 3σ1βσ′
1β)(σ2

0 − σ2
1) − 2σ2

1σ1βσ′
1β

σ4
1

dt

)−1

×∫ T

0

2
[
σ1β

σ3
1

(
(μ0 − μ1)2 − (μ0 − μ2)2

)
− σ2

0σ1β

σ3
1

(μ·1 − μ·2)

+
(

3σ2
0σ1βσ·1
σ4

1

−
σ2

0σ
·
1β

σ3
1

− 2σ1βσ·1
σ2

1

+
σ·1β

σ1

)
(μ1 − μ2)

]
dt + op(

√
T ).

For the Ornstein-Uhlenbeck process, it is shown that the model selection criterion using the
Euler or the Hermite expansion approximation is equivalent to using the true transition density.

Example A.3 (Ornstein-Uhlenbeck) If Model j is the Ornstein-Uhlenbeck process,

dXt = κ(η − Xt)dt + γdWt,

we have

A0
j (x) =

κ(η − x)
γ2

, B0
j (x) = 0, C0

j (x) = 0,

D0
j (x) = −κ2(η − x)2

γ2
+ κ, E0

j (x) = − κ

γ2
,

A0
jβ(x) = −2κ(η − x)

γ3
, D0

jβ(x) =
2κ2(η − x)2

γ3
, E0

jβ(x) =
2κ

γ3

for the exact transition density. We obtain the same functions as above if we use the Hermite
expansion approximation of Aı̈t-Sahalia (2002). Also for the Euler approximation, the difference of
the Euler approximated log-likelihood Lj and the true log-likelihood L0

j is

1
T

(
Lj(θ̂j) − L0

j(θ̂
0
j )
)

=
1
T

∫ T

0

κ∗(γ∗2 − σ2
0

)
2γ∗2 dt + Op(T−1/2)

p→ 0,

where κ∗ and γ∗ are pseudo-true values of κ and γ, since E
(
γ∗2 − σ2

0

)
= 0 from Lemma B.11.
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B Proofs

Hereafter we use a shorthand notation for the functional argument such as fg(x) .= f(x)g(x). We
denote �o(Δ, x, y) = �(Δ, x, y) + log

√
Δ and �∗(Δ, x, y) = Δ�o(Δ, x, y) in the following. (That is,

�o(Δ, x, y) = log[
√

Δp(Δ, x, y)] and �∗(Δ, x, y) = log
(
[
√

Δp(Δ, x, y)]Δ
)
.) We define f(0, x, x) =

limΔ→0 f(Δ, x, x). Also, for notational convenience, hereafter we denote the derivative w.r.t. the
parameters at y = x and Δ = 0 as �∗αyΔ(0, x, x) = (�∗yΔ)α(0, x, x), for example.

B.1 Assumptions

Assumption B.1 (Differentiability) For j = 1, 2, we assume that �∗i (t, x, y; θ), μi(x; α) and
σi(x; β) are infinitely differentiable in t ≥ 0, x, y ∈ D and θi ∈ Θi, and denoting each derivative of
�∗i , μi and σi as f(t, x, y; θ), there exist g which is locally bounded and increasing at a polynomial
rate of order k on both boundaries, and for all x ∈ D

|f(t, x, y; θ)| ≤ g(x)

for all small t ≥ 0, and all y close to x.

Note that Assumption B.1 guarantees the existence of the following limits, which we denote as

lim
Δ→0

�∗jyΔ(Δ, x, x) = Aj(x) lim
Δ→0

�∗jyyy(Δ, x, x) = Bj(x)

lim
Δ→0

�∗jyyyy(Δ, x, x) = Cj(x) lim
Δ→0

�∗jΔΔ(Δ, x, x) = Dj(x)

lim
Δ→0

�∗jyyΔ(Δ, x, x) = Ej(x).

Assumption B.2 (Extremal Bounds) Xt ∈ DX is stationary and there exists p > 0 such that

T−p sup
t∈[0,T ]

∣∣Xt

∣∣ p→ 0

as T → ∞. When DX = (0,∞), additionally assume

T−p sup
t∈[0,T ]

X−1
t

p→ 0.

For the properties of the extremal process of diffusion models, one can refer to Berman (1964),
Davis (1982), and Stone (1963), or also to Cline and Jeong (2009).

Assumption B.3 (Likelihood Expansion) For j = 1, 2, �∗j satisfies limΔ→0 �∗j(Δ, x, x) = 0,
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limΔ→0 �∗jy(Δ, x, x) = 0, and

lim
Δ→0

�∗jΔ(Δ, x, x) = − log
(
σj(x)

)
+ c

lim
Δ→0

�∗jyy(Δ, x, x) = −1/σ2
j (x)

for some constant c which does not depend on the parameters. Moreover, Bj(x) and Cj(x) do not
depend on μj(x).

It can be shown that the true transition density of diffusion processes satisfy this condition as in
Jeong and Park (2009). It is also not difficult to check these conditions are all satisfied by the
Euler and the Milstein approximated transition densities, and also the closed-form approximation
proposed by Aı̈t-Sahalia (2002).

Assumption B.4 (Identification) Denoting fjαα and fjββ as the following,

fjαα(x; θj) = μ0(x)Ajαα′ (x; θj) +
σ2

0(x)
2

Ejαα′ (x; θj) +
1
2
Djαα′ (x; θj)

fjββ(x; θj) =
(

σjβσ′
jβ

σ2
j

− σjββ′

σj

)
(x; θj) −

(3σjβσ′
jβ

σ4
j

− σjββ′

σ3
j

)
(x; θj)σ2

0(x)

for j = 1, 2, Efjαα(Xt; θ∗j ) and Efjββ(Xt; θ∗j ) are positive definite.

This is a condition to make the Hessian positive definite.

B.2 Proof of the Main Theorem

B.2.1 Useful Lemmas

For Lemmas B.8-B.10, we let them hold for both Case 1 and Case 2, that is, either when Δ2T → ∞
and Δ3T → 0, or when ΔT 2 → 0. We also introduce functional operators,

Af(t, x, y) = ft(t, x, y) + μ0(y)fy(t, x, y) +
1
2
σ2

0(y)fy2(t, x, y)

Bf(t, x, y) = σ0(y)fy(t, x, y)

for our derivation.

Lemma B.5 Let Xt ∈ DX be a positive recurrent process with a derivative of scale density s0(x)
and a speed density m0(x). For f such that Ef(Xt) = 0 and EG2

f (Xt) < ∞,

1√
T

∫ T

0

f(Xt)dt
d→ N

(
0,EG2

f(Xt)
)
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as T → ∞, where Gf (x) = σ0(x)s0(x)
∫ x

x0
f(v)m0(v)dv for x0 ∈ DX as chosen in (2.17).

Proof. Note that from Itô’s lemma

g(XT ) − g(X0) =
∫ T

0

(
μ0g· +

σ2
0g
··

2

)
(Xt)dt +

∫ T

0

σ0g·(Xt)dWt.

Letting
(
μ0g· + σ2

0g··/2
)
(x) = f(x), we have

g·(x) = s0(x)
∫ x

x0

f(v)m0(v)dv

as a solution of the partial differential equation. Thus we can write∫ T

0

f(Xt)dt = −
∫ T

0

Gf (Xt)dWt + g(XT ) − g(X0), (B.1)

where Gf (x) = σ0(x)s0(x)
∫ x

x0
f(v)m0(v)dv and g(x) =

∫ x

x0
Gf (v)/σ0(v)dv. If Ef(Xt) = 0,

1√
T

∫ T

0

f(Xt)dt = − 1√
T

∫ T

0

Gf (Xt)dWt +
g(XT )√

T
− g(X0)√

T

d→ N
(
0,EG2

f (Xt)
)

as T → ∞, and if Ef(Xt) 	= 0, we have EG2
f (Xt) = ∞ since otherwise it gives a contradiction.

Lemma B.6 Let Xt ∈ DX be a positive recurrent process with a speed density m0(x) and Ef(Xt) <

∞. If ∫
DX

f(x)m0(x)dx < ∞,

then ∫
DX

(
μ0f · +

σ2
0f

··
2

)
(x)m0(x)dx = 0.

Proof. From Itô’s lemma,

f(Xt) − f(Xs) =
∫ t

s

(
μ0f · +

σ2
0f ··
2

)
(Xr)dr +

∫ t

s

σ0f ·(Xr)dWr

for any t > s. Taking expectation on both sides,

Ef(Xt) − Ef(Xs) =
∫ t

s

E
(

μ0f · +
σ2

0f ··
2

)
(Xr)dr = 0

31



so we should have

E
(

μ0f · +
σ2

0f ··
2

)
(Xr) =

∫
DX

(
μ0f · +

σ2
0f ··
2

)
(x)

m0(x)
M(DX)

dx = 0,

where M(DX) =
∫
DX

m0(x)dx.

Lemma B.7 For f satisfying the conditions in Assumption B.1 and i.i.d. mean zero random vari-
ables Wi,Δ with EW2

i,Δ = cΔk for some c and k,

n∑
i=1

f(X(i−1)Δ)Wi,Δ = Op(Δ(k−1)/2T r+1/2)

as T → ∞.

Proof. Since we can view it as a continuous martingale representation whose quadratic variation
is given by the conditional variance process

c2
n∑

i=1

f2(X(i−1)Δ)Δk = Op(Δk−1T 2r+1),

the stated result easily follows from this.

Lemma B.8 (a) If the following repeated integrations only consist of the time (dt) integration,

n∑
i=1

g(X(i−1)Δ)
∫ iΔ

(i−1)Δ

· · ·
∫ s

(i−1)Δ

f(r, X(i−1)Δ, Xr)dr · · · dt = Op(Δk−1T )

as T → ∞ and Δ → 0, where k is the number of the repeated integrations.
(b) Otherwise,

n∑
i=1

g(X(i−1)Δ)
∫ iΔ

(i−1)Δ

· · ·
∫ s

(i−1)Δ

f(r, X(i−1)Δ, Xr)dr · · · dWt = Op(Δ(2k1+k2−1)/2
√

T )

as T → ∞ and Δ → 0, where k1 is the number of integrals w.r.t. the time (dt), and k2 is the
number of integral w.r.t. the Brownian motion (dWt). Here, though we did not write in the exact
form not to make it too complicated, in the expression for the repeated integration, the integral can
be with respect to either time, or to the Brownian motion, with any combinations of the two, with
a condition that it has at least one dWt term.

Proof. To prove this lemma, we utilize the result of Lemma 3 in Jeong and Park (2009), which
states the order of the same integrals are Op(Δk−1T 2r+1) for (a), and Op(Δ(2k1+k2−1)/2T 2r+1/2)
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for (b). Note that this Lemma 3 can be proven under Assumptions B.1 and B.2. For case (a), note
that we can apply Itô’s lemma

f(r,X(i−1)Δ, Xr) = f(0, X(i−1)Δ, X(i−1)Δ)

+
∫ r

(i−1)Δ

Af(t − (i − 1)Δ, X(i−1)Δ, Xt)dt +
∫ r

(i−1)Δ

Bf(t − (i − 1)Δ, X(i−1)Δ, Xt)dWt

repeatedly to get higher order terms. If we apply Itô’s lemma q ≥ 4/3r − 1/3 steps, then the
biggest order term becomes Op(Δk−1+q/2T 2r+1/2) from the specified lemma and Lemma B.7, thus
we obtain the stated result. Similarly for the case (b), we can apply Itô’s lemma repeatedly q ≥ 4/3r

steps, then the biggest order term becomes Op(Δ(2k1+k2−1)/2+q/2T 2r+1/2), thus we obtain the stated
result.

Lemma B.9 For 6 times differentiable f ,

Δ
n∑

i=1

f(X(i−1)Δ) =
∫ T

0

f(Xt)dt + Op(Δ
√

T )

as T → ∞ and Δ → 0.

Proof. From Itô’s lemma,

n∑
i=1

f(X(i−1)Δ)Δ =
∫ T

0

f(Xt)dt −
n∑

i=1

∫ iΔ

(i−1)Δ

∫ t

(i−1)Δ

(
μ0f · +

σ2
0f

··
2

)
(Xs)dsdt

−
n∑

i=1

∫ iΔ

(i−1)Δ

∫ t

(i−1)Δ

σ0f ·(Xs)dWsdt

=
∫ T

0

f(Xt)dt + AT,Δ + BT,Δ,

and BT,Δ = Op(Δ
√

T ) from Lemma B.8. For AT,Δ, we can do the same expansions three steps
further using Itô’s lemma and we get

AT,Δ = Δ
∫ T

0

f1(Xt)dt + 2Δ2

∫ T

0

f2(Xt)dt + RT,Δ,

where f1(x) =
(
μ0f · + σ2

0f ··/2
)
(x), f2(x) =

(
μ0f ·1 + σ2

0f
··
1 /2

)
(x), and RT,Δ is a remainder which

consists of the terms appearing in Lemma B.8. It is straightforward to show each term and RT,Δ

are Op(Δ
√

T ) using Lemma B.6, B.5 and B.8.
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Lemma B.10 For twice differentiable f ,

n∑
i=1

f(X(i−1)Δ)(WiΔ − W(i−1)Δ) =
∫ T

0

f(Xt)dWt + Op(
√

ΔT )

as T → ∞ and Δ → 0.

Proof. Using Itô’s lemma,

n∑
i=1

f(X(i−1)Δ)(WiΔ − W(i−1)Δ) =
∫ T

0

f(Xt)dWt −
n∑

i=1

∫ iΔ

(i−1)Δ

∫ t

(i−1)Δ

σ0f ·(Xs)dWsdWt

−
n∑

i=1

∫ iΔ

(i−1)Δ

∫ t

(i−1)Δ

(
μ0f · +

σ2
0f

··
2

)
(Xs)dsdWt

=
∫ T

0

f(Xt)dWt + Op(
√

ΔT )

from Lemma B.8.

Lemma B.11 Denoting fjα and fjβ as

fjα(x; θj) = μ0(x)Ajα(x; θj) +
σ2

0(x)
2

Ejα(x; θj) +
1
2
Djα(x; θj)

fjβ(x; βj) = −σjβ

σj
(x; βj) + σ2

0(x)
σjβ

σ3
j

(x; βj)

for j = 1, 2, Ef1α(Xt; θ∗1) = 0 and Ef1β(Xt; β∗
1) = 0.

Proof. By applying Itô’s lemma subsequently, we have

S1α(θ1) =
1
Δ

n∑
i=1

�∗1α(Δ, xi, yi)

=
1
Δ

n∑
i=1

�∗1α(0, xi, xi) +
n∑

i=1

A�∗1α(0, xi, xi) +
1
Δ

n∑
i=1

B�∗1α(0, xi, xi)W1i

+
Δ
2

n∑
i=1

A2�∗1α(0, xi, xi) +
1
Δ

n∑
i=1

BA�∗1α(0, xi, xi)W2i +
1
Δ

n∑
i=1

AB�∗1α(0, xi, xi)W3i

+
1
Δ

n∑
i=1

B2�∗1α(0, xi, xi)W4i +
1
Δ

n∑
i=1

B3�∗1α(0, xi, xi)W5i + Op(
√

ΔT ) + Op(ΔT ),
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where

W1i = WiΔ − W(i−1)Δ, W2i =
∫ iΔ

(i−1)Δ

∫ s

(i−1)Δ

dWrds, W3i =
∫ iΔ

(i−1)Δ

∫ s

(i−1)Δ

drdWs,

W4i =
∫ iΔ

(i−1)Δ

∫ s

(i−1)Δ

dWrdWs, W5i =
∫ iΔ

(i−1)Δ

∫ s

(i−1)Δ

∫ r

(i−1)Δ

dWudWrdWs, (B.2)

from Lemma B.8. From Assumption B.3 note that we have �̄α(0, x, x) = 0, A�̄α(0, x, x) = 0,
B�̄α(0, x, x) = 0, B2�̄α(0, x, x) = 0 and B3�̄α(0, x, x) = 0. Also note that W2i = Δ

2 (WiΔ−W(i−1)Δ)+
Δ

2
√

3
(ZiΔ − Z(i−1)Δ) and W3i = Δ

2 (WiΔ − W(i−1)Δ) − Δ
2
√

3
(ZiΔ − Z(i−1)Δ), where Z is a standard

Brownian motion independent of W . Thus, so that this score becomes a martingale in the limit,
we should have

E
(
A2�∗1α(0, Xt, Xt; θ)

)
= E

(
μ0(Xt)�∗1αyΔ(0, Xt, Xt; θ) +

σ2
0(Xt)

2
�∗1αyyΔ(0, Xt, Xt; θ) +

1
2
�∗1αΔΔ(0, Xt, Xt; θ)

)
= 0

at θ = θ∗1 as the all other remainder terms become of smaller orders. Similarly for S1β(θ∗1).

Lemma B.12 Denoting ιk as a k × 1 one vector, let w1α = T 1/2ιk1α , where k1α is the number
of drift term parameters, and w1β = T 1/2Δ−1/2ιk1β

, where k1β is the number of diffusion term
parameters. Define w1 = Diag

(
(w′

1α, w′
1β)′

)
as a diagonal matrix. Then

sup
θ∈N1

∣∣∣w−1
1

(
H1(θ) −H1(θ∗1)

)
w−1′

1

∣∣∣ = op(1)

as T → ∞ and Δ → 0, where N1 = {θ : w′
1(θ − θ∗1) ≤ 1}. The same hold for Model 2.

Proof. With the same step as in (B.4), note that we have the expansion for the Hessian as

H1αα′(θ) =
∫ T

0

[
A1αα(θ)μ0 +

1
2
E1αα(θ)σ2

0 +
1
2
D1αα(θ)

]
(Xt)dt + Op(

√
T )

H1αβ′(θ) =
∫ T

0

[
A1αβ(θ)μ0 +

1
2
E1αβ(θ)σ2

0 +
1
2
D1αβ(θ)

]
(Xt)dt + Op(

√
T )

H1ββ′(θ) =
1
Δ

∫ T

0

[
σjβσ′

jβ

σ2
j

(θ) − σjββ′

σj
(θ) −

(3σjβσ′
jβ

σ4
j

− σjββ′

σ3
j

)
(θ)σ2

0

]
(Xt)dt + Op(Δ−1/2

√
T )

35



with the notational exploitation for the functional arguments. We have

H1αα′(θ) −H1αα′(θ∗1)

=
(
(θ − θ∗1) ⊗ Ikθ1

)′ ∫ T

0

[
∂

∂θ
A1αα(θ̃)μ0 +

1
2

∂

∂θ
E1αα(θ̃)σ2

0 +
1
2

∂

∂θ
D1αα(θ̃)

]
(Xt)dt + Op(

√
T )

= Op(T ||θ − θ∗1 ||) + Op(
√

T )

uniformly in θ̃ ∈ Θ, where θ̃ lies in the line segment of θ and θ∗1 , and similarly for H1αβ′(θ) −
H1αβ′(θ∗1) and H1ββ′(θ) −H1ββ′(θ∗1). Thus(

T−1
(
H1αα′(θ) −H1αα′(θ∗1)

) √
ΔT−1

(
H1αβ′(θ) −H1αβ′(θ∗1)

)
√

ΔT−1
(
H1βα′(θ) −H1βα′(θ∗1)

)
ΔT−1

(
H1ββ′(θ) −H1ββ′(θ∗1)

) )
p→ 0

uniformly in θ ∈ Θ.

B.2.2 Proof of Theorem 2.3

Hereafter we use the convention f(0, x) = limΔ→0 f(Δ, x) for notational convenience. We also let
xi = X(i−1)Δ and yi = XiΔ.
Proof of (a).

Part 1. (Estimator Asymptotics) We have

w−1
1 S1(θ̂1) = w−1

1 S1(θ∗1) + w−1
1 H1(θ∗1)(θ̂1 − θ∗1) + op

(
w′

1(θ̂1 − θ∗1)
)

since from Lemma B.12

sup
θ∈N1

∣∣∣w−1
1

(
H1(θ) −H1(θ∗1)

)
w−1′

1

∣∣∣ = op(1)

where N1 = {θ : w′
1(θ − θ∗1) ≤ 1}. Thus

−w−1
1 H1(θ∗1)(θ̂1 − θ∗1) = w−1

1 S1(θ∗1) + op

(
w′

1(θ̂1 − θ∗1)
)

wpa1, and we get

θ̂1 − θ∗1 = −H−1
1 (θ∗1)S1(θ∗1) + op(θ̂1 − θ∗1). (B.3)

We let xi = X(i−1)Δ and yi = XiΔ hereafter for the simplicity. From Assumption B.3 and Lemma
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B.8,

S1α(θ∗1) =
1
Δ

n∑
i=1

�∗1α(Δ, xi, yi) (B.4)

=
1
Δ

n∑
i=1

�∗1α(0, xi, xi) +
n∑

i=1

A�∗1α(0, xi, xi) +
1
Δ

n∑
i=1

B�∗1α(0, xi, xi)W1i

+
Δ
2

n∑
i=1

A2�∗1α(0, xi, xi) +
1
Δ

n∑
i=1

BA�∗1α(0, xi, xi)W2i +
1
Δ

n∑
i=1

AB�∗1α(0, xi, xi)W3i

+
1
Δ

n∑
i=1

B2�∗1α(0, xi, xi)W4i +
1
Δ

n∑
i=1

B3�∗1α(0, xi, xi)W5i + Op(ΔT ),

where Wki’s are defined in (B.2), and from Lemma B.11,

S1α(θ∗1) = Δ
n∑

i=1

(
μ0(xi)�∗1αyΔ(0, xi, xi) +

σ2
0(xi)
2

�∗1αyyΔ(0, xi, xi) +
1
2
�∗1αΔΔ(0, xi, xi)

)
+ Op(ΔT )

= Op(ΔT ).

Similarly,

S1β(θ∗1) = Op(T ) (B.5)

H1αα(θ∗1) = Op(T ) (B.6)

H1ββ(θ∗1) = Op(Δ−1T ) (B.7)

H1αβ(θ∗1) = Op(T ). (B.8)

Also, from Assumption B.4, we can check that

H−1
1ββ(θ∗1) = Op(ΔT−1)

H−1
1αβ(θ∗1) = Op(T−1),

thus

θ̂1 − θ∗1 = Op(Δ).

Part 2. (Likelihood Asymptotics) We have

L1(θ̂1) − L2(θ̂2) = L1(θ∗1) − L2(θ∗2) + (θ̂1 − θ∗1)
′S1(θ∗1) − (θ̂2 − θ∗2)

′S2(θ∗2)

+
1
2
(θ̂1 − θ∗1)

′H1(θ∗1)(θ̂1 − θ∗1) − 1
2
(θ̂2 − θ∗2)

′H2(θ∗2)(θ̂2 − θ∗2) + op(ΔT )
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since from Lemma B.12

sup
θ∈N1

∣∣∣w−1
1

(
H1(θ) −H1(θ∗1)

)
w−1′

1

∣∣∣ = op(1)

where N1 = {θ : w′
1(θ − θ∗1) ≤ 1}, so

(θ̂1 − θ∗1)
′(H1(θ̃1) −H1(θ∗1)

)
(θ̂1 − θ∗1) = op(ΔT ).

We also have

(θ̂1 − θ∗1)′S1(θ∗1) = Op(ΔT )

(θ̂1 − θ∗1)′H1(θ∗1)(θ̂1 − θ∗1) = Op(ΔT ),

thus

L1(θ̂1) − L2(θ̂2) = L1(θ∗1) − L2(θ∗2) + Op(ΔT ).

Hereafter, let us suppress the parameter arguments, and let �o
1(Δ, x, y) = �1(Δ, x, y)+log

√
Δ. Note

that

L1(θ∗1) − L2(θ∗2) =
n∑

i=1

�1(Δ, xi, yi) −
n∑

i=1

�2(Δ, xi, yi) =
n∑

i=1

�o
1(Δ, xi, yi) −

n∑
i=1

�o
2(Δ, xi, yi).

From Lemma B.8,

n∑
i=1

�o
1(Δ, xi, yi) =

1
Δ

n∑
i=1

�∗1(0, xi, xi) +
n∑

i=1

A�∗1(0, xi, xi) +
1
Δ

n∑
i=1

B�∗1(0, xi, xi)W1i

+
Δ
2

n∑
i=1

A2�∗1(0, xi, xi) +
1
Δ

n∑
i=1

BA�∗1(0, xi, xi)W2i +
1
Δ

n∑
i=1

AB�∗1(0, xi, xi)W3i

+
1
Δ

n∑
i=1

B2�∗1(0, xi, xi)W4i +
1
Δ

n∑
i=1

B3�∗1(0, xi, xi)W5i + Op(ΔT ),

where Wki’s are defined in (B.2), so from Lemma B.8, the stated result follows by applying the
operators to each function and simplifying the equation.

Proof of (b).

Part 1. (Estimator Asymptotics)
First note that β∗

1 = β∗
2 when σ1 = σ2 from Lemma B.11 and Assumption B.3. From (B.3), (B.4),
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(B.6), (B.5), (B.7) and (B.8), we can check that

θ̂1 − θ∗1 = Op(T−1/2). (B.9)

From Lemma B.11 and Assumption B.3

S1β(θ∗1) =
1
Δ

n∑
i=1

�∗1β(Δ, xi, yi)

=
1
Δ

n∑
i=1

�∗1β(0, xi, xi) +
n∑

i=1

A�∗1β(0, xi, xi) +
1
Δ

n∑
i=1

B�∗1β(0, xi, xi)W1i

+
Δ
2

n∑
i=1

A2�∗1β(0, xi, xi) +
1
Δ

n∑
i=1

BA�∗1β(0, xi, xi)W2i +
1
Δ

n∑
i=1

AB�∗1β(0, xi, xi)W3i

+
1
Δ

n∑
i=1

B2�∗1β(0, xi, xi)W4i +
1
Δ

n∑
i=1

B3�∗1β(0, xi, xi)W5i + op(T ),

= ṠT,Δ + S̈1T,Δ + op(T ), (B.10)

where Wki’s are defined in (B.2), ṠT,Δ = Op(
√

T/Δ) and does not depend on μ1, and

S̈1T,Δ =
1
2

∫ T

0

A2�∗1β(0, Xt, Xt)dt.

It is because we can set

ṠT,Δ =
n∑

i=1

A�∗1β(0, xi, xi) =
1
Δ

∫ T

0

A�∗1β(0, Xt, Xt)dt + op(
√

T/Δ)

and we have

Δ
2

n∑
i=1

A2�∗1β(0, xi, xi) = S̈T,Δ + op(T ).
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Similarly from Assumption B.3

H1ββ(θ∗1) =
1
Δ

n∑
i=1

�∗1ββ(Δ, xi, yi)

=
1
Δ

n∑
i=1

�∗1ββ(0, xi, xi) +
n∑

i=1

A�∗1ββ(0, xi, xi) +
1
Δ

n∑
i=1

B�∗1ββ(0, xi, xi)W1i

+
Δ
2

n∑
i=1

A2�∗1ββ(0, xi, xi) +
1
Δ

n∑
i=1

BA�∗1ββ(0, xi, xi)W2i +
1
Δ

n∑
i=1

AB�∗1ββ(0, xi, xi)W3i

+
1
Δ

n∑
i=1

B2�∗1ββ(0, xi, xi)W4i +
1
Δ

n∑
i=1

B3�∗1ββ(0, xi, xi)W5i + op(T ),

= ḢT,Δ + Ḧ1T,Δ + op(T ), (B.11)

where ḢT,Δ = Op(T/Δ) and does not depend on μ1, and Ḧ1T,Δ = Op(T ). Note that

ḢT,Δ =
1
Δ

∫ T

0

A�∗1ββ′(0, Xt, Xt)dt + Op(
√

T ).

Now from

S1(θ̂1) = S1(θ∗1) + H1(θ∗1)(θ̂1 − θ∗1) +
(
H1(θ̃1) −H1(θ∗1)

)
(θ̂1 − θ∗1),

we have

−H1ββ(θ∗1)(β̂1 − β∗
1 ) = S1β(θ∗1) +

(
H1ββ(θ̃1) −H1ββ(θ∗1)

)
(β̂1 − β∗

1 ) + Op(
√

T )

wpa1 from (B.6), (B.7), (B.8) and (B.9) with the same steps as in the proof of Lemma B.12.
Denoting a differential operator w.r.t. any single element of α1 as ∂α,

0 = ∂αS1β(θ∗1) + H1ββ(θ̃1)∂αβ̂1 + ∂αH1ββ(θ̃1)(β̂1 − β∗
1 ) + Op(

√
T ),

and to avoid any contradiction, we should have ∂αβ̂1 = Op(Δ) from (B.9), (B.10) and (B.11). That
is, β̂1 − β∗

1 does not depend on α1 up to order Δ. Now note that

H1ββ(θ̃1) −H1ββ(θ∗1) =

(
(β̃1 − β∗

1 ) ⊗ ιkβ1

)′
Δ

∫ T

0

∂

∂β1
A�∗1ββ′(0, Xt, Xt; β̌1)dt + Op(T ) (B.12)
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since �∗1ββΔ and �∗1ββyy are functions of only β1, thus

β̂1 − β∗
1 = −H1ββ(θ∗1)−1S1β(θ∗1) −H1ββ(θ∗1)−1

(
H1ββ(θ̃1) −H1ββ(θ∗1)

)
(β̂1 − β∗

1 ) + Op(ΔT−1/2)

= −H1ββ(θ∗1)−1S1β(θ∗1) + QT,Δ + Op(ΔT−1/2)

with QT,Δ = Op(T−1/2) and does not depend on α1. From (B.10) and (B.11),

β̂1 − β∗
1 = −Ḣ−1

T,ΔṠT,Δ + QT,Δ − Ḣ−1
T,ΔS̈T,Δ + op(Δ),

thus

β̂1 − β∗
1 = β̇T,Δ + β̈1T,Δ + op(Δ), (B.13)

where

β̇T,Δ = −Ḣ−1
T,ΔṠT,Δ + QT,Δ

= −
(∫ T

0

A�∗1ββ′(0, Xt, Xt)dt

)−1 ∫ T

0

A�∗1β(0, Xt, Xt)dt + op(T−1/2)

which does not depend on μ1, and

β̈1T,Δ = −Δ
2

(∫ T

0

A�∗1ββ′(0, Xt, Xt)dt

)−1 ∫ T

0

A2�∗1β(0, Xt, Xt)dt.

Part 2. (Likelihood Asymptotics) We have

L1(θ̂1) − L2(θ̂2) = L1(θ∗1) − L2(θ∗2) + (θ̂1 − θ∗1)
′S1(θ∗1) − (θ̂2 − θ∗2)

′S2(θ∗2)

+
1
2
(θ̂1 − θ∗1)

′H1(θ∗1)(θ̂1 − θ∗1) − 1
2
(θ̂2 − θ∗2)

′H2(θ∗2)(θ̂2 − θ∗2) + Op(1).

This is because

(α̂1 − α∗
1)

′(H1αα(θ̃1) −H1αα(θ∗1)
)
(α̂1 − α∗

1) = op(1)

(α̂1 − α∗
1)

′(H1αβ(θ̃1) −H1αβ(θ∗1)
)
(β̂1 − β∗

1) = op(1)

from the same step as in the proof of Lemma B.12, and

(β̂1 − β∗
1)′
(
H1ββ(θ̃1) −H1ββ(θ∗1)

)
(β̂1 − β∗

1 ) − (β̂2 − β∗
2 )′
(
H2ββ(θ̃2) −H2ββ(θ∗2)

)
(β̂2 − β∗

2 ) = Op(1)
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from (B.12) and (B.13). For the Hessian terms above, we have

(α̂1 − α∗
1)

′H1αα(θ∗1)(α̂1 − α∗
1) = Op(1)

(α̂1 − α∗
1)

′H1αβ(θ∗1)(β̂1 − β∗
1) = Op(1)

and

(β̂1 − β∗
1 )′H1ββ(θ∗1)(β̂1 − β∗

1) − (β̂2 − β∗
2 )′H2ββ(θ∗2)(β̂2 − β∗

2)

= β̇T,ΔḢT,Δ(β̈1T,Δ − β̈2T,Δ) + (β̈1T,Δ − β̈2T,Δ)ḢT,Δβ̇T,Δ + Op(1)

=
∫ T

0

A�∗1β(0, Xt, Xt)dt

(∫ T

0

A�∗1ββ′(0, Xt, Xt)dt

)−1

×∫ T

0

[
A2�∗1β(0, Xt, Xt) −A2�∗2β(0, Xt, Xt)

]
dt + op(

√
T )

from (B.11) and (B.13). Also note that from (B.4) and (B.9),

(θ̂1 − θ∗1)′S1(θ∗1) = (β̂1 − β∗
1 )′S1β(θ∗1) + Op(1)

thus from (B.10) and (B.13),

(θ̂1 − θ∗1)
′S1(θ∗1) − (θ̂2 − θ∗2)

′S2(θ∗2)

= β̇T,Δ

(
S̈1T,Δ − S̈2T,Δ

)
+
(
β̈1T,Δ − β̈2T,Δ

)
ṠT,Δ + op(

√
T )

= −
∫ T

0

A�∗1β(0, Xt, Xt)dt

(∫ T

0

A�∗1ββ′(0, Xt, Xt)dt

)−1

×∫ T

0

[
A2�∗1β(0, Xt, Xt) −A2�∗2β(0, Xt, Xt)

]
dt + op(

√
T ).

For the asymptotics of L1(θ∗1) − L2(θ∗2), rest of the steps are similar to the proof of Theorem 2.3.
We get the stated result by applying the operators to each function and simplifying the equation.

Remark B.13 The conditions Δ3T → 0 in Case 1 and ΔT 2 → 0 in Case 2 are not necessary and
they are only technical conditions to make the proof simpler. We can make the order arbitrarily
small if necessary, but only with higher order expansions in (B.4), for example. This also applies
to the other theorems and corollaries.

B.2.3 Proof of Corollary 2.4

Proof. It is straightforward from Theorem 2.3 using Lj(θ̂j) − L0
j(θ̂

0
j ) for L1(θ̂1) − L2(θ̂2).
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B.2.4 Proof of Theorem 2.5

Proof. Proof for (a) is straightforward by applying Lemma B.5 to Theorem 2.3. For (b), note that
we can write

L1(θ̂1) − L2(θ̂2) = −
∫ T

0

Ga(Xt)dWt

+
1
2

∫ T

0

Gb(Xt)dWt

(∫ T

0

A�∗1ββ′(0, Xt, Xt)dt

)−1 ∫ T

0

[
A2�∗1β −A2�∗2β

]
(0, Xt, Xt)dt + op(

√
T )

from (B.1). Since

1√
T

(∫ T

0

Ga(Xt)dWt,

∫ T

0

G′
b(Xt)dWt

)′
d→ N(0, Σ)

from Theorem 4.1 of van Zanten (2000) and

(
1,

1
2

∫ T

0

[
A2�∗1β −A2�∗2β

]′(0, Xt, Xt)dt

[ ∫ T

0

A�∗1ββ′(0, Xt, Xt)dt

]−1)′
→a.s. C

as T → ∞, the stated result easily follows by applying the operators to each function and simplifying
the equation.

B.2.5 Proof of Corollary 2.6

Proof. The proof easily follows from Theorem 2.3 with the same steps as in the proof of Theorem
2.5, and the proof is omitted.

B.2.6 Proof of Theorem 2.9

Proof. We rewrite the partial sum g[rn] as

g[rn] =
T 1/2

κ(T, Δ)

[rn]∑
i=1

ui =

{
1√
n

∑[rn]
i=1 Δ1/2ui (for Case 1)

1√
n

∑[rn]
i=1 Δ−1/2ui (for Case 2)

, (B.14)

and let vi = Δ1/2ui for Case 1 and vi = Δ−1/2ui for Case 2. Then we define the sample autoco-
variance function

γ̂v(lΔ) =
1
n

n∑
i=|l|+1

(v̂i − v̄)(v̂i−|l| − v̄), (B.15)
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where v̂i = Δ1/2ûi for Case 1, v̂i = Δ−1/2ûi for Case 2, and v̄ = n−1
∑n

i=1 v̂i. Note that we have
the relationship,

γ̂v(lΔ) =

{
Δγ̂(lΔ) (for Case 1)
Δ−1γ̂(lΔ) (for Case 2)

. (B.16)

The long-run variance estimator Ω̂ of the numerator g[1n] of tn is given by

Ω̂ =
n−1∑

l=1−n

k

(
lΔ
M

)
γ̂v(lΔ) =

{
Δ
∑n−1

l=1−n k
(

lΔ
M

)
γ̂(lΔ) (for Case 1)

Δ−1
∑n−1

l=1−n k
(

lΔ
M

)
γ̂(lΔ) (for Case 2)

. (B.17)

Since g[rn] = n−1/2
∑[rn]

i=1 vi satisfies the functional central limit theorem (Assumption 2.8), the
limiting distribution of Ω̂ is given by Theorem 1 in Kiefer and Vogelsang (2005) replacing g[rT ]

and Assumption 2 in Kiefer and Vogelsang (2005) with g[rn] and our Assumption 2.8 respec-
tively. Although vi depends on Δ, we use the high level assumption on vi to apply the results
of Kiefer and Vogelsang (2005). Therefore we have the test statistics tn given by

tn =
1√
n

∑[rn]
i=1 v̂i√
Ω̂

=

⎧⎨⎩
Δ√
T

∑n
i=1 ûi

/√
Δ
∑n−1

l=1−n k
(

lΔ
M

)
γ̂(lΔ) (for Case 1)

1√
T

∑n
i=1 ûi

/√
Δ−1

∑n−1
l=1−n k

(
lΔ
M

)
γ̂(lΔ) (for Case 2)

(B.18)

=
1√
n

∑n
i=1 ûi√∑n−1

l=1−n k
(

lΔ
M

)
γ̂(lΔ)

(for Case 1 and Case 2). (B.19)
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C Tables

Case 1 Example 1 (Only the diffusion functions are misspecified)
M0 : dXt = 0.2 (0.07 − Xt)dt + 0.07

√
Xt dWt (CIR)

M1 : dXt = κ(μ − Xt)dt + σX0.9
t dWt

M2 : dXt = κ(μ − Xt)dt + σX0.0785
t dWt

Example 2 (Both the drift and diffusion functions are misspecified)
M0 : dXt = 0.2 (0.07 − Xt)dt + 0.07

√
Xt dWt (CIR)

M1 : dXt = κ(0.0726− Xt)Xtdt + σX1.5
t dWt (Ahn and Gao)

M2 : dXt = κ(0.05 − Xt)Xtdt + σX−0.648
t dWt

Case 2 Example 3 (Only the drift functions are misspecified)
M0 : dXt = −Xtdt + 0.04 dWt (Vasicek)
M1 : dXt = κ(0.01 − Xt)dt + σdWt

M2 : dXt = κ(−0.01 − Xt)dt + σdWt.

Example 4
M0 : dXt = 0.2 (0.07 − Xt)dt + 0.07

√
Xt dWt (CIR)

M1 : dXt = κ(0.0780− Xt)Xtdt + σX1.5
t dWt (Ahn and Gao)

M2 : dXt = κ(0.0888− Xt)dt + σX1.5
t dWt (CKLS,CEV ρ = 1.5)

Table 1: Four examples for the Monte Carlo experiments of our model selection tests. M0 is the
true process, Mj for j = 1, 2, are competing nonnested misspecified models. In Case 1, models have
different diffusion functions, and In Case 2, they have the identical diffusion functions.
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T = 5 T = 40
τT,Δ tn(0.43) tn(0.85) tn(1.28) τT,Δ tn(0.85) tn(1.70) tn(2.56)

Case 1
Example 1

Sub N 18.9 4.4 3.0 2.2 14.2 6.5 6.2 5.6
Sub Emp 18.4 5.9 4.7 3.4 14.3 7.7 8.2 7.4
Bootstrap 7.0 6.9 6.0 6.0 7.2 7.6 7.8 6.7

N(0,1) N/A 9.0 11.8 14.2 N/A 7.2 7.1 7.7
Fixed-b N/A 5.4 4.9 4.4 N/A 6.1 4.9 4.8

Example 2
Sub N 25.9 5.7 5.2 3.4 31.7 12.9 10.7 9.9

Sub Emp 26.1 8.1 7.1 5.4 31.5 14.1 11.5 10.3
Bootstrap 12.5 8.7 7.9 6.9 22.0 18.2 15.0 12.9

N(0,1) N/A 11.5 14.0 15.7 N/A 29.9 23.8 21.0
Fixed-b N/A 7.3 5.1 5.2 N/A 28.6 20.7 16.4

Case 2
Example 3

Sub N 1.5 7.4 6.7 5.2 2.7 3.7 2.8 2.9
Sub Emp 3.2 11.6 10.2 8.7 4.0 5.0 4.6 4.9
Bootstrap 0.4 5.5 7.3 7.3 5.1 8.2 8.4 8.3

N(0,1) N/A 7.2 12.8 18.1 N/A 5.5 8.8 10.3
Fixed-b N/A 4.1 5.6 5.7 N/A 4.6 7.1 8.1

Example 4
Sub N 1.9 5.2 3.9 3.0 5.4 6.6 7.9 8.5

Sub Emp 2.7 7.9 6.9 5.7 6.5 11.2 10.8 11.0
Bootstrap 0.6 4.8 4.6 4.5 1.7 5.6 7.1 8.1

N(0,1) N/A 1.4 3.2 5.6 N/A 2.1 4.7 7.2
Fixed-b N/A 0.7 0.9 1.3 N/A 1.6 3.5 5.2

Table 2: Size of the tests. The rejection rates (%) are from the Monte Carlo experiments for the
two sided, 5% level tests with daily observations. The number of simulation iterations is 1, 000. The
statistic τT,Δ is the non-pivotal log-likelihood ratio statistics. tn(M) is the pivotal statistic with the
HAC variance estimator using the Bartlett kernel with a bandwidth of M years. The subsampling
method is based on 199 blocks of equal size S = T 0.4 for T = 5 and S = T 0.7 for T = 40. “Sub N”
implies the subsampling approximations by fitting the normal distribution with the sample mean
and variance of the subsample statistics, and “Sub Emp” means that we have used the empirical
distribution of the subsample statistics directly. The block bootstrap (“bootstrap”) is based on 399
bootstrap repetitions with a block length l = T/25. “Fixed-b” uses the critical values from the
fixed-b asymptotic approximations.
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Case 1 Example 1: M1 is preferred
M0 : dXt = 0.2 (0.07 − Xt)dt + 0.07 X0 .6

t dWt

Example 2: M2 is preferred
M0 : dXt = 0.2 (0.07 − Xt)dt + 0.07 X0 .45

t dWt

Case 2 Example 3: M1 is preferred
M0 : dXt = (0 .01 − Xt)dt + 0.04 dWt

Example 4: M1 is preferred
M0 : dXt = 0.2 (0 .05 − Xt)dt + 0.07

√
Xt dWt

Table 3: Specifications of true processes for power simulations. The italic numbers show the
modifications of the DGPs in the size simulations.

T = 5 T = 40
τT,Δ tn(0.43) tn(0.85) tn(1.28) τT,Δ tn(0.85) tn(1.7) tn(2.56)

Case 1
Example 1 5.98 11.78 10.38 10.20 62.90 89.10 86.94 83.74
Example 2 10.52 7.92 7.14 6.58 19.26 19.32 20.30 19.96

Case 2
Example 3 4.66 5.16 5.68 5.20 19.34 31.38 32.70 32.18
Example 4 2.54 5.94 6.76 6.78 19.62 21.52 21.96 22.10

Table 4: Size corrected power of the tests. Rejection rates (%) are from the Monte Carlo exper-
iments for the size corrected power of the two sided, 5% level tests based on 5, 000 simulation
iterations.. Size corrected critical values are from the 2.5% and 97.5% quantiles of 5, 000 repetitions
of simulations under the null hypotheses.
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Spot rates (T = 37 years, n = 9, 411)
Statistic τT,Δ tn(0.83) tn(1.67) tn(2.50)

27.620 3.542 2.737 2.437
Sub N AG 0 0 0
Sub Emp AG 0 0 0
Bootstrap 0 0 0 0
N(0, 1) N/A AG AG AG
Fixed-b N/A AG AG AG

Exchange rates (T = 10 years, n = 2, 588)
Statistic τT,Δ tn(0.54) tn(1.08) tn(1.62)

−1.051 −0.837 −0.754 −0.775
Sub N 0 0 0 0
Sub Emp CIR 0 0 0
Bootstrap 0 0 0 0
N(0, 1) N/A 0 0 0
Fixed-b N/A 0 0 0

Table 5: Two candidate models (Ahn and Gao (AG) and CIR models) are compared for the spot rate
and the exchange rate data. Four different statistics are used. τT,Δ is non-pivotal, tn(M) is using
the HAC variance estimator with a bandwidth parameter M years. The sampling distributions of
the test statistics are approximated by the subsampling (199 blocks with size T 0.7 which is 12.5
and 5.01 years for the spot and the exchange rates respectively) with the fitted normal distribution
(“Sub N”) or the empirical distribution (“Sub Emp”), the block bootstrap (“Bootstrap”) with 25
equal-sized blocks and 399 bootstrap repititions, and the standard normal distribution N(0, 1) (for
asymptotically pivotal statistics only). “AG” or “CIR” represents the superiority of the respective
model; “0” represents failing to reject.
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Figure 1: Two diffusion models (μ∗
1, σ

∗
1) and (μ∗

2, σ
∗
2) at their pseudo-true parameter values are

considered to be equivalent when their diffusion functions σ∗
1 and σ∗

2 have equal divergence from
the true diffusion function σ0, i.e. they are on the same σ-orbit. If the models are equivalent, they
can be distinguished further by the divergence of their drift functions measured by the vertical
elevation from the σ-orbit. The cones are diffusions with the same diffusion functions. The null
hypothesis of our model selection test is that the models are equivalent in terms of both the diffusion
functions (on the same σ-orbit) and the drift functions (of equal elevation).

49



1971 1977 1983 1989 1995 2001 2007

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Daily 1−month Eurodollar Rate

Year

A
nn

ua
liz

ed
 r

at
e

Figure 2: Annualized daily 1-month Eurodollar deposit rates from 01/01/1971 ∼ 12/31/2007 (busi-
ness days only)
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Figure 3: Daily Euro/Dollar exchange rates from 01/01/1999 ∼ 12/31/2008 (business days only)
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