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Appendix A derives some expressions useful elsewhere in the main text and appendix. Ap-
pendix B details the calibration and solution method. Appendix C reports further robustness
checks. Appendix D contains a numerical example of the main analytic results. Appendix E
contains additional theoretical results and proofs.

A Derivations of Useful Expressions

The intermediate-good producer’s first-order conditions for profit-maximization yield

pjXt = (1− κ)pjt

[
Xjt

Ejt

]−1/σ

and pjRt =κ pjt
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.

The relative incentive to research technologies for use in sector j increases in the relative price
of the intermediates and decreases in the machine-intensity of sector j’s output. Combining
the first-order conditions, we have

pjXt =
1− κ

κ

[
Rjt

Xjt

]1/σ
pjRt. (A-1)

From equation (3) and the monopolist’s markup, we have

xjit = p
1

1−α
jXtAjit.

Substituting into the definition of Xjt and using the definition of Ajt, we have

Xjt = p
α

1−α
jXt Ajt. (A-2)

Substituting into equation (A-1) and solving for equilibrium machine prices yields (7) and (11)
in the main text.

The final-good producer’s first-order condition for intermediates j is:

pjt =βE νj
Yt∑N
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ϵ−1
ϵ

jt

E
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ϵ

jt . (A-3)

Combining the intermediate-good producers’ first-order condition for resources with the final-
good producers’ first-order conditions, we find demand for resource j:

pjRt =κβE νj
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Market-clearing for resource j then implies[
Rjt + ζjQjt
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. (A-4)

Demand for sector j’s resources (for example) shifts inward as the share of those resources
in the production of intermediate good j increases and also shifts inward as the share of
intermediate good j in production of the final good increases. Equations (9) and (10) in the
main text follow from dividing by the analogous equation for resource k.

Final-good producers’ zero-profit condition is

Yt =wtLt + rtKt +
N∑
j=1

pjtEjt, (A-5)

where wt is the wage paid to labor and rt is the rental rate of capital. From final-good
producers’ first-order conditions, these are:

wt =(1− βK − βE)
Yt
Lt
,

rt =βK
Yt
Kt

.

B Calibration, Climate Change Modeling, and Solu-

tion Method

Table B-1 reports parameter values that are fixed across all specifications. Table B-2 reports
market data used to calculate remaining parameters. I use a 10-year timestep and a policy
horizon of 400 years. Let resources 1, 2, and 3 represent coal, natural gas, and renewables,
respectively. I model coal and natural gas as depletable (ζ1, ζ2 = 1) and renewables as non-
depletable (ζ3 = 0), as if renewable energy installations must be rebuilt every ten years. I
set Qj1 = 0 for each j.

Begin by considering the supply of each type of resource. Marten et al. (2019) follow,
among others, Haggerty et al. (2015) in using a long-run supply elasticity of 2.4 for coal.
Marten et al. (2019) follow Arora (2014) in using a long-run supply elasticity of 0.5 for natural
gas. Based on these, I use ψ1 = 2.4 and ψ2 = 0.5. The price-responsiveness of wind and solar
derives from heterogeneity in resource sites’ quality. Drawing in part on the work of others,
Johnson et al. (2017) describe the supply of power from solar photovoltaics, concentrating
solar power, onshore wind, and offshore wind available by region of the world and by resource
quality. Costs are reported in dollars per unit power and resource potential is reported in
units of energy. I convert costs to dollars per unit electrical energy by using the capacity
factor reported for each resource quality bin in each region. This capacity factor adjusts for
the fact that the power producible from renewable resources is not available throughout the
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day or throughout the year.1 I then convert dollars per unit of electrical energy to dollars
per units of energy in the resource by using the efficiency of each type of generator. From
the Energy Information Administration’s Annual Energy Review 2011, the efficiencies are
12% for solar photovoltaics, 21% for solar thermal, and 26% for wind. Aggregating across
resource types and regions, I estimate ψ3 = 3.00.

Next consider the elasticities of substitution in the final-good and intermediate-good pro-
duction functions. Papageorgiou et al. (2017) estimate an elasticity of substitution between
clean and dirty energy capacity of around 1.8, and Stern (2012) estimates an elasticity of
substitution between coal and gas of 1.426, with a standard error of 0.387. Version 6 of the
EPPA model uses an elasticity of substitution of 1.5 (Chen et al., 2016), and the ADAGE
model uses an elasticity of substitution of 1.25 (Ross, 2009). In line with these, I fix ϵ = 1.8.

Much literature has estimated the elasticity of substitution between energy and other
inputs, but there is not much literature on the elasticity of substitution between resources and
other inputs in the production of energy. I fix σ = 0.4 based on several lines of evidence. The
most directly relevant calibration is the calibration of the energy supply sector’s production
function in Lemoine (2020). This calibration assigns an elasticity of substitution of 0.42 to
the energy supply sector, based on estimates in Koesler and Schymura (2015) implemented
by Marten and Garbaccio (2018).2 As further evidence, some computable general equilibrium
models of energy use assign an elasticity of substitution of 0.3 to nearly all sectors (see Turner,
2009), version 6 of the EPPA model uses an elasticity of substitution of 0.1 between resources
and a capital-labor composite in electricity production (Chen et al., 2016), and ADAGE uses
an elasticity of substitution of 0.6 between resources and a materials-value-added composite
(Ross, 2009).

The inverse of α is the markup over marginal cost charged by machine producers. The
average markup in 2016 was around 1.6 both in the U.S. (De Loecker et al., 2020) and
globally (De Loecker and Eeckhout, 2018). I therefore fix α = 1/1.6 = 0.625.

I fix κ = 0.5 and, following Golosov et al. (2014), fix βK = 0.3 and βE = 0.04. The
theory showed that the critical share parameters were the νj, not the β or κ, and sensitivity
tests support this conclusion.

Population Lt evolves as in DICE-2016R:

Lt = L∞

(
L1

L∞

)e−gL(t−1)

,

where I convert the DICE-2016R equation into a differential equation (with time in decades)
and solve it. The capital stock follows DICE-2016R. The initial value K1 uses World Bank

1In my setting, capacity factors are implicitly captured by the calibration of the technology variables
and the share parameters. Further, the elasticity of substitution σ can be interpreted as imposing a larger
capacity factor penalty at higher penetrations.

2Koesler and Schymura (2015) use a nonlinear least squares estimator of a CES production function with
a panel of countries. Marten and Garbaccio (2018) report those elasticities of substitution along with NAICS
codes. Using these, Lemoine (2020) reports the average elasticity of substitution in a combined energy supply
sector, weighted by gross output from the Bureau of Economic Analysis. The underlying elasticities are all
similar.
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GDP deflators to change the DICE-2016R initial value of 223 trillion year 2010 dollars to
trillion year 2014 dollars. DICE uses an annual depreciation rate of 0.1. Converting to the
decadal timestep yields

δ = 1− (1− 0.1)10 = 0.6513.

The savings rate is endogenous in DICE-2016R but varies only between 0.24 and 0.26 over
the 500-year horizon. I therefore fix Υ = 0.25.

Now consider climate damages. The climate-economy integrated assessment literature
typically models climate change as reducing total production. Letting Tt be surface temper-
ature relative to 1900, we have, adapting Nordhaus (2017),

D(Tt) = 1− d T 2
t

with d = 0.00236. The robustness check with higher damages increases d to 0.0228, from
the mean of the calibration to Pindyck (2019) in Appendix C.1 of Lemoine (2021).

The evolution of total factor productivity AY t follows DICE-2016R (Nordhaus, 2017). It
grows initially at 1.48% annually, with the growth rate declining at a rate of 0.5% annually:

AY (t+1) = AY t

9∏
s=0

[
1 + (0.0148)e−0.005∗(10∗(t−1)+s)

]
.

Now consider the innovation function. Only the product of η and γ is important for
improvements in technology over time. I therefore fix η at 1. Changes in γ do not affect
the realized first-period technology, as the calibration of the Aj0 (described below) adjusts
to offset γ. Instead, changes in γ affect how rapidly technology evolves after the first period.
Different values of γ can be interpreted as different step sizes for research advances, as
different probabilities of research successes, and/or as different sizes for the population of
researchers. I choose values of γ for the base case and the robustness check to generate
a range of plausible futures, from relatively slow transitions in the base case (γ = 1) to
relatively fast transitions in the “larger scientific advances” robustness check (γ = 6).

These two values for γ are consistent with the range of values implied by prior literature.
In the calibration of Acemoglu et al. (2019), each scientist expects to advance technology
by 11% over 5 years at the initial level of renewable scientists used here, implying a γ of
around 0.2 for our 10-year timestep.3 This value is close to the base case. Ignoring spillovers
between sectors, Fried (2018) estimates that marginally increasing the share of scientists
improves technology by 426% over 5 years at the initial level of renewable scientists used
here, implying a γ of around 8 for our 10-year timestep.4 This estimate is close to the “larger

3In their paper, scientists improve technology by a factor γ: At+1 = γ ∗ At. The probability of success
is ηs−ψt (in practice, they fix their ζ = 0). So the expected breakthrough per scientist is, in their notation,

ηs−ψt (γ − 1). Using their values of η = 0.598, ψ = 0.67, and γ = 1.07 yields an expected breakthrough per
scientist of 0.1105.

4The increase in next period’s technology At+1 due to a marginal increase in scientists st is, using equation
(4) in Fried (2018) and adjusting for the population of scientists being 1 for me and 0.01 for Fried (2018),
dAt+1/dst = γη(100ρ)(st/(100ρ))

η−1At (in her notation). Her Table 1 gives ρ = 0.01, γ = 3.96, and
η = 0.79, implying that dAt+1/dst = 4.26At.
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scientific advances” case. (Acemoglu et al. (2016) also estimate an innovation production
function, but the mapping to the present paper is less clear.)

The remaining parameters are each Aj0, each Ψj, each νj, and AY 1. I calibrate these
ten parameters so that the first period’s equilibrium Y1, Rj1, sj1, and pj1 match data (see
Table B-2). World Bank data for global output from 2011–2015 imply that the value of
the final good produced over the first ten-year timestep is 765 trillion year 2014 dollars.
Initial resource consumption comes from summing consumption from 2011–2015, as reported
in the BP Statistical Review of World Energy.5 The International Energy Agency’s World
Energy Investment 2017 gives R&D spending on clean energy, on thermal generation, on coal
production, and on oil and gas production. I divide thermal expenditures equally between
coal and gas and attribute all oil and gas spending to gas. The first period must therefore
have 12% of scientists working on coal, 65% of them working on gas, and 23% of them
working on renewables. I calibrate each pj1 to be consistent with levelized costs from IEA
(2015). Using the market discount rate of 7%, the median cost for coal is around 80 $/MWh,
for natural gas combined cycle plants is around 100 $/MWh, and for solar photovoltaics is
around 150 $/MWh.6

The initial conditions on the Rj1 and the sj1 and the guesses for the Aj0 and the Ψj

combine to yield the Ej1. I then use the ratio of the final-good firms’ first-order conditions
(see equation (A-3)) and the adding-up constraint on the share parameters to solve for the
νj:

ν3 =
1

1 + p2,1
p3,1

(
E2,1

E3,1

)1/ϵ(
1 + p1,1

p2,1

(
E1,1

E2,1

)1/ϵ) ,
ν2 =

(1− ν3)

1 + p1,1
p2,1

(
E1,1

E2,1

)1/ϵ ,
ν1 =1− ν2 − ν3.

For the initial conditions and any given guesses for the Aj0 and Ψj, I set AY 1 to ensure that
initial final good production matches Y0.

7

We now have the νj, AY 1, the initial conditions, and the guesses for the Aj0 and the
Ψj. The levels of the intermediate goods’ prices then follow from the final-good firms’ first-
order conditions. We require six conditions to pin down the Aj0 and the Ψj. The zero-profit
conditions for intermediate-good firms provide three conditions. The conditions on the initial
research allocation provide two more conditions, as Π1,1/Π2,1 = 1 and Π1,1/Π3,1 = 1. These

5Natural gas and coal are used for electricity generation, heating, and industrial processes. I here ab-
stract from these differences. To obtain the energetic content of renewables from the reported tonnes of oil
equivalent, use BP’s assumed thermal efficiency of 38% to obtain the equivalent electrical energy and then
use a 20% generator efficiency to convert electrical energy to energy in the renewable resource.

6These costs have changed over time and can be affected by pollution regulations. Further, costs for
heating applications may be different from costs for electricity. Experiments suggest that results are not
highly sensitive to these choices.

7Note that AY 1 absorbs any unit conversions between energy, other inputs, and output.
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two conditions can be thought of as defining A2,0 and A3,0 as functions of A1,0 and the Ψj.
Final-good firms’ zero-profit condition (equation (A-5)) provides the remaining condition.
This zero-profit condition uses the calibrated intermediate prices, not the price implied
by the final-good firm’s first-order conditions (which would trivially satisfy the zero-profit
condition by Euler’s Homogeneous Function Theorem). This last condition can be thought
of as pinning down the level of the final-good firms’ first-order conditions. I solve for the Aj0
and the Ψj via an optimizer that seeks to satisfy the nonlinear equality constraints subject
to the implied share parameters being positive and summing to a value less than 1.8

Resource use generates carbon dioxide emissions that eventually cause warming. Time t
emissions are

et = ē+
3∑
j=1

ξjRjt.

I calculate the emission intensities of coal and gas by dividing emissions for each resource from
2010–2014 (from the Carbon Dioxide Information Analysis Center) by resource consumption
over the initial timestep. Other emissions ē come from summing emissions from all other
reported categories, which includes emissions from oil.9 The renewable resource does not
generate emissions (ξ3 = 0).

The carbon cycle and climate model update those in DICE-2016R. The carbon cycle
follows Joos et al. (2013, Table 5), as recommended and compiled by Dietz et al. (2021). It
represents 4 reservoirs. The transfer coefficients are

Λ =


1 0 0 0
0 0.9975 0 0
0 0 0.9730 0
0 0 0 0.7927


10

.

Emissions flow to each reservoir as

b =


0.2173
0.2240
0.2824
0.2763

 .
The year 2015 values (in Gt C) are

M1 =


588 + 139.1

90.2
29.2
4.2

 ,
8The optimizer succeeds in satisfying the constraints to within 1% for all parameterizations used in the

paper.
9In the base case’s laissez-faire scenario, eliminating the (mostly oil) emissions ē reduces global tempera-

ture by around 0.4◦C in 400 years. In fact, projected oil use is not so far from constant in the base scenario of
IEA (2021) and only slowly increasing in the reference case of EIA (2021). Fixing ē may slightly understate
future warming under laissez-faire but overstate future warming under optimal policy.
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where 588 Gt C is the stock of preindustrial carbon.
The parameters of the climate model come from Geoffroy et al. (2013), as compiled by

Dietz et al. (2021). Additional atmospheric carbon increases radiative forcing to Ft(Mt),
which measures additional energy at the earth’s surface due to CO2 in the atmosphere.
Forcing is

Ft(Mt) = f2x
ln
(∑4

i=1M
i
t/588

)
ln(2)

,

where M i
t indicates element i of Mt and f2x is forcing induced by doubling CO2. Surface

temperature evolves as

Tt+1 = Tt +
10

5
ϕ1 [Ft+1(Mt+1)− λTt − ϕ3 (Tt − T ot )] .

Ocean temperature evolves as

T ot+1 = T ot +
10

5
ϕ4 [Tt − T ot ] .

Steady-state warming from doubled carbon dioxide (“climate sensitivity”) is f2x/λ = 3.1◦C.
The base specification’s preferences follow DICE-2016R. Period utility takes the familiar

power form in per-capita consumption, with elasticity of intertemporal substitution EIS.
Converting a 1.5% per year utility discount rate to a per-decade rate yields:

ρ = (1 + 0.015)10 − 1 = 0.1605.

The policymaker seeks to maximize utilitarian welfare W :

W =
t̂∑
t=1

Lt
(1 + ρ)t−1

(ct/Lt)
1−1/EIS

1− 1/EIS
.

I set t̂ = 40, implying a 400-year horizon.
In contrast to the DICE climate-economy model, abatement cost emerges endogenously

within a period from the tradeoffs between fuels and evolves endogenously as technologies
and resource depletion change over time. In the initial period, a tax of 1 $/tCO2 reduces
emissions by 16%, a tax of 10 $/tCO2 reduces emissions by 19%, a tax of 50 $/tCO2 reduces
emissions by 25%, and a tax of 100 $/tCO2 reduces emissions by 30%. In DICE-2016R,
emission reductions of 25% require a tax of 59 $/tCO2 and emission reductions of 30%
require a tax of 80 $/tCO2. These values are in the same ballpark as the present model even
though there is nothing in the calibration that requires them to be.

In the no-policy simulations, I solve each period’s equilibrium by solving for the research
allocation that maximizes scientists’ expected profits (using equations (4) and (7)) within a
search for the resource allocation that clears the market for resources (as in equation (A-4)).
For any given resource allocation, I first check whether a case with all scientists in the
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renewable sector generates greater expected profits in that sector than in any other. If it does,
the corner allocation is an equilibrium, but if it does not, I solve for the research allocation
between the coal and gas sectors conditional on no scientists working in the renewable sector.
If this allocation is also not an equilibrium, I solve for the equilibrium allocation between coal
and gas conditional on any number of scientists in renewables and search for the number of
scientists in working in renewables that equalizes that sector’s expected profit to the expected
profit from the other sectors that have nonzero scientists.

When working backwards in time from the year 2015, I solve for the time t equilibrium
as follows. First, I guess a time t research allocation and a time t capital stock. Then
I solve for the time t incoming technology implied by this allocation and the known time
t+1 technology. The time t technology in turn implies a time t equilibrium, which includes
the time t equilibrium research allocation and implies the time t + 1 equilibrium capital
stock. I search for the time t research allocation and time t capital stock at which the
implied time t equilibrium research allocation matches the guess and the implied time t+ 1
equilibrium capital stock matches the known time t+ 1 capital stock. I simulate backwards
with resource depletion fixed at its year 2015 value and with the realized history of global
surface temperature from Zhang et al. (2021), adjusted slightly to ensure a match with
T1. I use the fitted population growth representation from Lemoine (2021, pgs A-7–A-8) to
project population backwards, and I maintain the present calibration of growth in AY t when
projecting total factor productivity backwards.

To optimize policy, I search for the policy and resource use trajectories that maximize
welfare while clearing the market. This is a mathematical program with equilibrium con-
straints, which can be quite difficult to solve. There are 12 state variables: the capital stock,
the two cumulative resource use trackers, the three average technology levels, the four car-
bon stocks, and the two temperature variables. The key to solving the model is to convert
it to a form that allows for an analytic gradient. The trick is to have the solver guess not
only the trajectories of the tax and/or research subsidy but also the trajectories of the 12
state variables and the three resource use trajectories, imposing constraints that the resource
markets clear in every period (equation (A-4)) and the transition equations hold in every
period.10 For any given guess, I solve for each period’s equilibrium allocation of scientists
using equations (4) and (7)) and the algorithm described above. At a solution, the state
variables’ trajectories are as if the model were simulated forward with the chosen policies.11

This problem is still a difficult bilevel programming problem, with the lower level pro-
gramming problem often finding corner solutions (i.e., it is often true that some sector has no
scientists). But this form of the problem allows for the provision of analytic gradients for the
objective and constraints: we essentially have a series of static problems once we condition

10In the cases with the research subsidy, the solver chooses the number of clean scientists directly, with
the other two types of scientists clearing their markets conditional on this choice. The level of the subsidy
is implied by the resulting research allocation. At a corner allocation with all scientists in the renewable
sector, I define the subsidy as the smallest value compatible with the corner allocation.

11In effect, the policymaker gets to simultaneously choose the trajectories of all states and all policy
controls subject to constraints imposed by the market and by physical laws. If I did not impose the market
constraints, then I would have the social planner’s problem.
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on the full set of state variables, because the partial derivative of the objective (and also of
the constraints) with respect to any element of the solver’s guess needs to account only for
effects on same-period payoffs and on the same-period transition equations (observing that
the partial derivative holds later states fixed because they are also elements of the solver’s
guess). Within those analytic gradients, I obtain the derivatives of equilibrium scientists
by applying the implicit function theorem to the system of equations defined by equalized
expected profits (for those sectors for which scientists are interior) and by the constraint
on total scientists. I solve the model using the active-set algorithm in the Knitro solver for
Matlab (Byrd et al., 2006).

B.1 Replicating with Matlab’s built-in solver

In case the user does not have access to the Knitro solver, the replication package permits
the user to use Matlab’s built-in fmincon solver. The code uses the interior-point algorithm
in order to force the solver to honor constraints at every iteration (which avoids errors).
Most results with the fmincon solver are quite similar to those reported in the main text and
in Appendix C, but some do differ notably. The substantive differences are of two types.

First, in some cases the fmincon algorithm does not calibrate the model properly, failing
to fit the market data targeted in Table B-2. A poor calibration throws off welfare, states,
and controls in all policy scenarios and in the no-policy scenario. This issue is notable in the
“Cobb-Douglas” and “Larger Scientific Advances” cases, in which the fmincon calibration
fails to achieve the targeted share of initial research activity in renewables.

Second, the fmincon algorithm does not find the optimal policy in some cases, especially
when the optimal policy includes a research subsidy that generates a corner solutions in
scientists and when higher damages justify a higher optimal emission tax. Two such cases
that also have a roughly similar calibrated initial research share (so that welfare comparisons
are meaningful) are “Resource-Saving Machines” and “Higher Damages”. In the “Resource-
Saving Machines” specification, the reported results have all scientists initially working in the
renewable sector when the policymaker uses both an emission tax and a research subsidy, but
fmincon finds only 84% of scientists initially working in the renewable sector. In the “Higher
Damages” specification, the reported results have an emission tax of around $261 per tCO2

whether or not there is also a research subsidy, whereas fmincon finds an emission tax of $109
per tCO2 in the absence of a research subsidy (the same as in the base scenario, even though
one should have expected the tax to incease upon raising damages) and $9,768,667 per tCO2

in the presence of a research subsidy (even though one should have expected the tax to
weakly decrease upon introducing a research subsidy). In each of these cases, the reported
results achieve higher welfare than does the fmincon solution, which is further evidence of
the suboptimality of the fmincon solution.
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Table B-1: Parameters fixed across specifications.

Parameter Value Description

Market parameters
ϵ 1.8 Elasticity of substitution in final-good production
σ 0.4 Elasticity of substitution in intermediate-good production
βK 0.3 Factor share of capital in final-good production
βE 0.04 Factor share of energy in final-good production
κ 0.5 Share parameter in intermediate-good production
α 0.625 Inverse of machine producers’ markup

ψ1, ψ2, ψ3 2.4, 0.5, 3 Resource supply elasticities
ζ1, ζ2, ζ3 1, 1, 0 Indicators for resource depletion

Q1,1, Q2,1, Q3,1 0, 0, 0 Year 2015 depletion adjustment
η 1 Probability of research success
γ 1 Innovation step size
L1 7403 Year 2015 population (millions)
L∞ 11500 Asymptotic population (millions)
gL 0.7 Rate of approach to asymptotic population level
δ 0.6513 Depreciation rate of capital per decade
Υ 0.25 Capital savings rate
K1 238.6 Year 2015 capital (trillion year 2014 dollars)

Welfare parameters
ρ 0.1605 Utility discount rate per decade

EIS 1/1.45 Elasticity of intertemporal substitution
t̂ 40 Horizon (decades)

Climate parameters
d 0.00236 Damage parameter

ξ1, ξ2, ξ3 0.0250, 0.0139, 0 Emission intensity of resources (Gt C per EJ)
ē 37.7 Exogenous emissions per timestep (Gt C per decade)
ϕ1 0.386 Warming delay parameter
ϕ3 0.73 Parameter governing transfer of heat from ocean to surface
ϕ4 0.034 Parameter governing transfer of heat from surface to ocean
f2x 3.503 Forcing from doubling CO2 (W/m2)
λ 1.13 Forcing per degree warming ([W/m2]/◦C)

M1 see text Year 2015 carbon reservoirs (Gt C)
T1 0.85 Year 2015 surface temperature (◦C, relative to 1900)
T o1 0.0068 Year 2015 lower ocean temperature (◦C, relative to 1900)

Table B-2: Market data matched by the first period’s equilibrium (2011–2020). Resources
are ordered as coal, gas, renewable.

Endogenous Outcome Target Description

Y1 765 Global output in trillion year 2014 dollars
{R1,1, R2,1, R3,1} {1617, 1278, 224} Resource consumption in EJ
{p1,1, p2,1, p3,1} {80, 100, 150} Energy prices in $/MWh
{s1,1, s2,1, s3,1} {0.12, 0.65, 0.23} Shares of research
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C Additional Robustness Results

Table C-1 reports the data underlying Table 1 in the main text. The first rows in each panel
of Table C-1 repeat results familiar from the main text. I here discuss the fourth through
final rows in more detail than in the main text.

The fourth row delays policy by 50 years. Whereas a policymaker again uses a research
subsidy to shift all scientists to the renewable sector as soon as she can, the optimal emission
tax is actually less effective at redirecting scientists to the renewable sector than in the base
case. The delay reduces the benefits of each type of policy by around half, but the policies’
relative value is largely unchanged.

The fifth row applies a lower utility discount rate. Each policy is now nearly ten times
more valuable than before because the present-day policymaker is more sensitive to future
damages from warming. The level of the standalone research subsidy is unchanged because
the policymaker maxed it out even in the base case, but the initial emission tax increases
to $188 per tCO2. The magnitude of the standalone emission tax’s advantage over the
standalone research subsidy is now larger than in the base case, but its relative benefit is
now smaller. Adding a research subsidy to an emission tax does not generate any additional
value because the emission tax is large enough to switch all scientists to the renewable sector
with or without the complementary research subsidy.

The sixth row considers a case in which each unit of climate change reduces output to a
larger degree. The initial emission tax is now much higher, increasing from $132 to $261 per
tCO2. It is also insensitive to the presence of the research subsidy: when emission reduction
motivations justify a tax so large as to immediately shift all researchers to the renewable
sector, the policymaker does not care whether she also has access to a research subsidy or
not. The emission tax is again around twice as valuable as the research subsidy, and now
the optimal portfolio of the two policies provides exactly the same value as the optimal
standalone emission tax.

The seventh row studies a case in which energy intermediates are more substitutable
for each other, as with an improved electric grid or improved battery technology. Laissez-
faire is qualitatively consistent with the base case. Because policy now more quickly shifts
resource supply towards renewables, it limits warming to lower levels and provides greater
value than in the base case. The increased ease of shifting resource supply narrows the
wedge (as a percentage of policy value) between the emission tax and the research subsidy,
and the optimal portfolio of the two policies provides exactly the same value as the optimal
standalone emission tax because the standalone emission tax shifts all research to renewables
in the first period.

The eighth row reports an alternate parameterization of the research process, increasing
the innovation step size γ from 1 to 6 (discussed in Appendix B). The laissez-faire transition
to renewable resource use occurs around a century earlier than in the base case because
innovation is so much more effective (in particular, the supply expansion effect pushes re-
searchers to renewables sooner), and a standalone research subsidy advances that by another
eighty years. Renewables now dominate resource supply by midcentury whether or not the
policymaker can also use an emission tax. The standalone emission tax is still more valuable
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than the standalone research subsidy, but the gap is narrower than in the base case. Fur-
ther, the standalone emission tax does not shift researchers towards the renewable resource
as effectively as in the base case. As a result, the benefits from combining the two policies
are larger than in the base case.

The ninth row considers a policymaker who optimally subsidizes production of machines
in order to overcome market power.12 Correcting this additional market failure increases
welfare when the policymaker can use an emission tax, but the aditional value created is
only a tiny fraction of the value created by the emission tax. Further, an initial emission
tax of $122 per tCO2 now suffices to redirect all research to the renewable sector, which
eliminates the gap in value between the standalone emission tax and the portfolio of the
two instruments. However, in a demonstration of the theory of the second-best (Lipsey
and Lancaster, 1956), correcting the market failure in machine production actually reduces
welfare when the policymaker can use only a research subsidy. Allowing the policymaker
to subsidize machine production strengthens the importance of the emission tax, and this
machine production subsidy is itself far less important than either the emission tax or the
research subsidy.

The final row assesses the importance of resource depletion. Now a laissez-faire transition
to renewable research occurs only near the end of the policy horizon and a laissez-faire
transition to renewable resources happens just after the policy horizon. Relative to the base
model, turning off depletion increases laissez-faire temperature in 2115 (2415) from 3.2◦C
(8.5◦C) to 3.9◦C (12.9◦C). The optimal year 2015 emission tax falls from $132 to $74 per
tCO2. Instead of shifting 95% of scientists to the renewable sector, this tax shifts only 75%
of scientists. As a result, the wedge between the value of the standalone emission tax and
the standalone research subsidy is narrower than in the base model, and adding a research
subsidy to the emission tax now creates more value (and substantially lowers the optimal
initial emission tax, to $13 per tCO2).

13 However, the main story is unchanged, as the
emission tax is still more valuable than the research subsidy and still provides nearly as
much value as the portfolio of the two.

D Numerical Example

A numerical example will make the analytic results more concrete. Ignore climate damages,
depletion, and growth in productivity, and set βE = 1 so that energy is the only input to

12This subsidy reduces the consumer price pjxit of machines from α to α2. It is not applied when calibrating
the model. It is also not applied in laissez-faire, so the reported balanced growth equivalent benefit of policy
includes the benefits of the machine subsidy.

13The much smaller emission tax in the absence of depletion likely reflects two factors. First, consumption
per capita reaches extraordinary levels, which leads to very high long-run consumption discount rates via
Ramsey discounting intuition. Second, the marginal effect of emissions on long-run warming is smaller in the
absence of depletion because the “forcing” that determines warming is concave in the stock of atmospheric
carbon (see Appendix B). This concavity becomes especially relevant because laissez-faire carbon dioxide
increases from 394 ppm in 2015 to a staggering 8730 ppm in 2415, as opposed to “only” 2500 ppm under
laissez-faire in the base case.
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Table C-1: Additional results for alternate model versions.

Policy Tools Available

Specification No policy Emission tax Research subsidy Both instruments

Emission Tax in 2015 ($ per tCO2)

Base - 131.8 - 122.3
Resource-Saving Machinesa - 98.6 - 90.4
Cobb-Douglas Machinesb - 99.0 - 73.3
50-Year Delay - 0 - 0
Less Discountingc - 188.2 - 188.2
Higher Damagesd - 260.9 - 260.9
More Substitutable Energy Typese - 117.0 - 117.0
Larger Scientific Advancesf - 163.0 - 118.3
Optimal Machine Subsidyg - 121.9 - 121.8
No Depletionh - 74.4 - 12.9

Renewables’ Share of Resources in 2015 (%)

Base 7.2 22.3 8.8 21.8
Resource-Saving Machinesa 7.2 15.1 7.3 14.7
Cobb-Douglas Machinesb 7.2 17.6 7.6 15.9
50-Year Delay 7.2 7.2 7.2 7.2
Less Discountingc 7.2 26.2 8.8 26.2
Higher Damagesd 7.2 31.0 8.8 31.0
More Substitutable Energy Typese 7.2 28.4 10.1 28.4
Larger Scientific Advancesf 7.2 25.3 11.5 25.3
Optimal Machine Subsidyg 7.2 26.8 10.5 26.8
No Depletionh 7.2 17.9 8.8 14.6

Renewables’ Share of Scientists in 2015 (%)

Base 22.6 95.0 100 100
Resource-Saving Machinesa 23.3 31.7 100 100
Cobb-Douglas Machinesb 23.2 38.3 100 100
50-Year Delay 22.6 22.6 22.6 22.6
Less Discountingc 22.6 100 100 100
Higher Damagesd 23.0 100 100 100
More Substitutable Energy Typese 23.4 100 100 100
Larger Scientific Advancesf 23.3 56.4 100 100
Optimal Machine Subsidyg 22.6 100 100 100
No Depletionh 22.6 75.1 100 100

Temperature in 2115 (◦C, relative to 1900)

Base 3.2 2.5 2.9 2.5
Resource-Saving Machinesa 2.7 2.3 2.7 2.3
Cobb-Douglas Machinesb 2.7 2.2 2.7 2.2
50-Year Delay 3.2 2.7 3.0 2.7
Less Discountingc 3.2 2.4 2.9 2.4
Higher Damagesd 3.1 2.2 2.8 2.2
More Substitutable Energy Typese 3.7 2.3 2.7 2.3
Larger Scientific Advancesf 3.8 2.5 2.7 2.4
Optimal Machine Subsidyg 3.2 2.5 2.9 2.5
No Depletionh 3.9 3.0 3.4 3.0
a σ increased from 0.4 to 1.5.
b σ increased from 0.4 to 1.
c ρ reduced from 1.5% to 0.01% per year, as in Stern (2007).
d Damages increased to calibration of Lemoine (2021), from survey evidence in Pindyck (2019).
e ϵ increased from 1.8 to 5.
f Innovation step size increased from γ = 1 to γ = 6.
g pjxit reduced from α to α2 in policy scenarios but not in laissez-faire.
h Each ζj set to zero.
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(a) Research Shares with σ = 0.5 (b) Resource Use Shares with σ = 0.5

(c) Research and Resource Use Shares with σ =
1.5

(d) Historical Resource Use Shares

Figure D-1: Top: An example of an innovation-led transition, with σ = 0.5. Bottom left:
An example of lock-in, with σ = 1.5. Resources 2 and 3 have nearly identical resource use
shares. Bottom right: Shares of global fossil energy supply, from Smil (2010).
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final-good production (or, equivalently, capital and labor are fixed over time). Let there
be three types of energy (N = 3), which differ only in their quality ν and in their initial
technology. Let the first type of energy represent coal, the second represent oil, and the
third represent gas. Looking back two hundred years, technologies for using coal were far
more advanced than technologies for using oil, which in turn were more developed than
technologies for using gas. I therefore fix the initial average quality of technology at 0.5
for coal, at 1% of this value for oil, and at 0.1% of this value for gas. We can think of
the quality of fossil fuel resources as largely determined by the ratio of carbon to hydrogen
bonds.14 Energy derives from breaking hydrogen bonds. Fuels with a lot of carbon and little
hydrogen are considered to be of lower quality because they are bulkier and more polluting.
Coal is mostly carbon, oil has more hydrogen bonds per unit carbon, and natural gas has
the most hydrogen bonds per unit carbon. I therefore set ν1 = 0.27 (for coal), ν2 = 0.34 (for
oil), and ν3 = 0.39 (for gas).15

The top panels of Figure D-1 plot a case with σ = 0.5, and the lower left panel plots
a case with σ = 1.5. The “coal” sector 1 begins with the majority of resource use and
research activity. In the case of resource-saving technologies (bottom left), research activity
and resource use are locked-in to the “coal” sector 1, which attracts all research effort in
all periods and increases its share of resource use over time. In the case of resource-using
technologies, we see innovation-led transitions. Research begins transitioning immediately
towards the “oil” sector 2 (top left panel), and resource use eventually follows (top right
panel). The “gas” sector 3 does not attract any research effort for a while and maintains a
very small share of resource use even as oil displaces coal. However, after 20 periods, research
effort shifts strongly towards the gas sector, and resource use shifts towards the gas sector
after 60 periods. In the long run, all sectors attract identical shares of research effort and
maintain stable shares of resource use, with their ordering determined by the quality ν of
each resource.

The endogenous dynamics of our setting with resource-using machines are qualitatively
similar to historical patterns. The bottom right panel of Figure D-1 plots resource shares
since 1800. The historical patterns in these shares are similar to the patterns that emerge
from our numerical simulations with resource-using machines: resource shares change rapidly
as a transition occurs, and transitions do not drive formerly dominant resources out of the
market. In fact, resource shares have been fairly stable since 1970. The historical patterns are
nothing like the patterns that emerge from our simulations with resource-saving machines.

14Smil (2017, 245) describes how oil is of higher quality than coal because it has higher energy density, is
cleaner, and is more transportable and storable. On page 270, he writes: “There has been a clear secular
shift toward higher-quality fuels, that is, from coals to crude oil and natural gas, a process that has resulted
in relative decarbonization (a rising H:C ratio) of global fossil fuel extraction. . . ”

15The remaining parameters are D(·) = 0, ζ1 = ζ2 = ζ3 = 0, AY 1 = 1, ϵ = 3, α = 0.5, κ = 0.5,
ψ1 = ψ2 = ψ3 = 3, Ψ1 = Ψ2 = Ψ3 = 1, η = 1, and γ = 0.5. The qualitative results are not sensitive to the
choice of these parameters.
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E Proofs and Derivations for Section 3

This appendix derives useful intermediate results before providing proofs and derivations
omitted from the main text.

E.1 Tâtonnement Stability

One may be concerned that interior equilibria are not “natural” equilibria in the presence
of positive feedbacks from resource use to innovation and of potential complementarities.
Indeed, Acemoglu (2002) and Hart (2012) have emphasized the role of knowledge spillovers
in allowing interior research allocations to be stable in the long run. This appendix shows
that interior equilibria are in fact “natural” equilibria in the present setting.

Rearranging equation (12) and using sjt + skt = 1, we obtain sjt as an explicit function
of Aj(t−1)/Ak(t−1) and of Rjt/Rkt at an interior allocation.16 Substituting into the versions of
equation (A-4) corresponding to each resource then gives us two equations in two unknowns.
This system defines the equilibrium Rjt and Rkt that clear the markets for each resource.

Define the tâtonnement adjustment process and stability as follows:

Definition E-1. A tâtonnement adjustment process increases Rjt if equation (A-4) is not
satisfied and its right-hand side is greater, decreases Rjt if equation (A-4) is not satisfied
and its left-hand side is greater, and obeys analogous rules for Rkt. I say that an equilibrium
(R∗

jt, R
∗
kt) is tâtonnement-stable if and only if the tâtonnement adjustment process leads to

(R∗
jt, R

∗
kt) from (Rjt, Rkt) sufficiently close to (R∗

jt, R
∗
kt).

The tâtonnement process changes Rjt and Rkt so as to eliminate excess supply or demand,
and tâtonnement stability requires that this adjustment process converge to an equilibrium
point from values close to the equilibrium. This process is the same as that in Samuelson
(1941) and Arrow and Hurwicz (1958), except expressed in quantities rather than prices.
The following proposition shows that our equilibrium is tâtonnement-stable:

Proposition 4. The equilibrium is tâtonnement-stable.

Proof. See Appendix E.3.

Now use the versions of equation (A-4) corresponding to each resource to define Rjt and
Rkt as functions of sjt,

17 and then restate equation (12) as a function only of sjt:

Πjt

Πkt

=
Aj(t−1)

Ak(t−1)

(
Aj(t−1) + ηγsjtAj(t−1)

Ak(t−1) + ηγ(1− sjt)Ak(t−1)

) −1
σ+α(1−σ)

(
Rjt(sjt)

Rkt(sjt)

) 1+σ/ψ
σ+α(1−σ)

[
Ψj

Ψk

] −σ/ψ
σ+α(1−σ)

.

(E-1)

The following corollary gives us the total derivative of Πjt/Πkt with respect to sjt:

16Technically, this function should be written to allow for corner solutions in the research allocation. The
proof of stability will account for corner solutions.

17Rearrange the versions of equation (A-4) corresponding to each resource to put all terms on the right-
hand side. For given sjt, the Jacobian of this system in Rjt and Rkt is negative definite.
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Corollary 1. The right-hand side of equation (E-1) strictly decreases in sjt.

Proof. See Appendix E.4

The supply expansion effect makes the relative incentive to research in sector j decline in
the number of scientists working in sector j. However, when sector j’s share of resource use
increases in the relative quality of its technology, a positive feedback between research and
resource use maintains sector j’s research incentives even as more scientists move to sector
j. The proof shows, as is intuitive, that whether the relative incentive to research in sector j
declines in the number of scientists working in sector j is identical to whether the equilibrium
is tâtonnement-stable: tâtonnement-stability is not consistent with positive feedbacks that
are strong enough to overwhelm the supply expansion effect. And we have already seen that
interior equilibria are in fact tâtonnement-stable.

E.2 Useful Lemmas

First, note that equations (A-2) and (7) imply

Xjt =

[
1− κ

κ
pjRt

] ασ
σ(1−α)+α

[
Rjt

Ajt

] α
σ(1−α)+α

Ajt. (E-2)

Rearranging equation (12) and using sjt + skt = 1, we obtain sjt as an explicit function
of Aj(t−1)/Ak(t−1) and of Rjt/Rkt at an interior allocation:

sjt

(
Rjt

Rkt

,
Aj(t−1)

Ak(t−1)

)
=

(1 + ηγ)
(
Aj(t−1)

Ak(t−1)

)−(1−σ)(1−α)
Rjt
Rkt

[
[Rjt/Ψj ]

1/ψ

[Rkt/Ψk]1/ψ

]σ
− 1

ηγ + ηγ
(
Aj(t−1)

Ak(t−1)

)−(1−σ)(1−α)
Rjt
Rkt

[
[Rjt/Ψj ]1/ψ

[Rkt/Ψk]1/ψ

]σ . (E-3)

Let Σx,y represent the elasticity of x with respect to y, and let Σx,y|z represent the
elasticity of x with respect to y holding z constant. The following lemma establishes signs
and bounds for elasticities that will prove useful:

Lemma 2. The following hold, with analogous results for sector k:

1. ΣYt,Ejt ,ΣYt,Ekt ∈ [0, 1] and ΣYt,Ejt + ΣYt,Ekt = 1.

2. ΣEjt,Rjt|Xjt ,ΣEjt,Xjt ∈ [0, 1] and ΣEjt,Rjt|Xjt + ΣEjt,Xjt = 1.

3. If σ < 1, then ΣEjt,Xjt → 0 as Aj(t−1) → ∞ and ΣEkt,Xkt → 0 as Ak(t−1) → ∞.

4. ΣXjt,Ajt =
σ(1−α)

σ(1−α)+α ∈ (0, 1)

5. ΣXjt,Rjt =
ασ/ψ+α
σ(1−α)+α ∈ (0, 1]

6. ΣAjt,sjt =
ηγsjt

1+ηγsjt
∈ [0, 1)
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7. Σsjt,Rjt =
ψ+σ
ψ

2+ηγ
ηγsjt

Zt > 0, where Zt ∈
[

1+ηγ
(2+ηγ)2

, 1
4

]
. Σsjt,Rkt = −Σsjt,Rjt.

8. Σsjt,Aj(t−1)
= − (1−σ)(1−α)

Aj(t−1)

(2+ηγ)
ηγ

Zt, which is < 0 if and only if σ < 1. Zt is as above.

Σsjt,Ak(t−1)
= −Σsjt,Aj(t−1)

.

9. Σsjt,skt = −skt/sjt ≤ 0

Proof. Most of the results follow by differentiation and the definition of an elasticity. #1
follows from differentiating the final-good production function Yt(Ejt, Ekt); #2 follows from
differentiating the intermediate-good production function Ejt(Rjt, Xjt); #4 follows from dif-
ferentiating equation (E-2); #5 follows from differentiating equation (E-2) after using equa-
tion (2) to substitute for pjRt and using ψ ≥ α/(1 − α); #6 follows from differentiating
equation (5); #7 and #8 follow from differentiating equation (E-3); and #9 follows from the
research constraint.

To derive #3, note that

ΣEjt,Xjt =
(1− κ)X

σ−1
σ

jt

κR
σ−1
σ

jt + (1− κ)X
σ−1
σ

jt

.

From (A-1), (A-2), and (2), we have:

Xjt =Ajt

(
1− κ

κ

[
Rjt

Xjt

]1/σ
Ψ

−1/ψ
j R

1/ψ
jt

) α
1−α

=Ajt

(
1− κ

κ
Ψ

−1/ψ
j R

1
ψ
+ 1
σ

jt

) σα
σ(1−α)+α

.

Xjt → ∞ as Aj(t−1) → ∞, which implies with σ < 1 that ΣEjt,Xjt → 0 as Aj(t−1) → ∞.
Analogous results hold for sector k.

To derive #7 and #8, define

Zt ≜

(
Aj(t−1)

Ak(t−1)

)−(1−σ)(1−α)
Rjt
Rkt

[
[Rjt/Ψj ]

1/ψ

[Rkt/Ψk]1/ψ

]σ
[
1 +

(
Aj(t−1)

Ak(t−1)

)−(1−σ)(1−α)
Rjt
Rkt

[
[Rjt/Ψj ]1/ψ

[Rkt/Ψk]1/ψ

]σ ]2
and recognize that sjt ∈ (0, 1) implies(

Aj(t−1)

Ak(t−1)

)−(1−σ)(1−α)
Rjt

Rkt

[
[Rjt/Ψj]

1/ψ

[Rkt/Ψk]1/ψ

]σ
∈
(

1

1 + ηγ
, 1 + ηγ

)
from equation (12).
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Note that ΣX,A and ΣX,R are the same in each sector. I therefore often omit the sector
subscripts on these terms.

Using sjt

(
Rjt
Rkt
,
Aj(t−1)

Ak(t−1)

)
, the equilibrium is defined by the versions of equation (A-4) corre-

sponding to each resource, which are functions only of Rjt and Rkt. Rewrite these equations
as (suppressing the predetermined technology arguments in sjt):

1 = κ νjA
ϵ−1
ϵ

Y

[
Yt (Rjt, Rkt, sjt (Rjt/Rkt))

Ejt (Rjt, sjt (Rjt/Rkt))

]1/ϵ [
Ejt (Rjt, sjt (Rjt/Rkt))

Rjt

]1/σ [
Rjt

Ψj

]−1/ψ

≜Gj(Rjt, Rkt),

1 = κ (1− νj)A
ϵ−1
ϵ

Y

[
Yt (Rjt, Rkt, sjt (Rjt/Rkt))

Ekt (Rkt, sjt (Rjt/Rkt))

]1/ϵ [
Ekt (Rkt, sjt (Rjt/Rkt))

Rkt

]1/σ [
Rkt

Ψk

]−1/ψ

≜Gk(Rjt, Rkt).

We have:

Lemma 3. ∂Gj(Rjt, Rkt)/∂Rjt < 0 and ∂Gk(Rjt, Rkt)/∂Rkt < 0.

Proof. Differentiating yields:

∂Gj(Rjt, Rkt)

∂Rjt

=Gj

{
−
(
1

ψ
+

1

σ

)
1

Rjt

+

(
1

σ
− 1

ϵ

)
1

Ejt

[
∂Ejt
∂Rjt

+
∂Ejt
∂sjt

∂sjt
∂Rjt

]
+

1

ϵ

1

Yt

[
∂Yt
∂Ejt

∂Ejt
∂Rjt

+
∂Yt
∂Ejt

∂Ejt
∂sjt

∂sjt
∂Rjt

+
∂Yt
∂Ekt

∂Ekt
∂skt

∂skt
∂sjt

∂sjt
∂Rjt

]}
=
Gj

Rjt

{
− 1

ψ
− 1

σ

[
1− ΣEjt,Rjt|Xjt − ΣEjt,Xjt

(
ΣXjt,Rjt + ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)]
− 1

ϵ

[(
1− ΣYt,Ejt

)(
ΣEjt,Rjt|Xjt + ΣEjt,XjtΣXjt,Rjt + ΣEjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)
− ΣYt,EktΣEkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt

]}
.

If the economy is at a corner in sjt, then Σsjt,Rjt = 0 and, using Lemma 2, the above
expression is clearly negative. So consider a case with interior sjt. The final two lines are
negative. So the overall expression is negative if the third-to-last line is negative, which is
the case if and only if

0 ≥− 1

ψ
+

1

σ

[
− 1 + ΣEjt,Rjt|Xjt + ΣEjt,Xjt

(
ΣXjt,Rjt + ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)]
=− 1

ψ
+

1

σ

[
− 1 + ΣEjt,Rjt|Xjt + ΣEjt,Xjt

(
σ + ψ

ψ

α + σ(1− α) 2+ηγ
1+ηγsjt

Zt

σ(1− α) + α

)]
=− 1

ψ
+

1

σ
ΣEjt,Xjt

[
− 1 +

σ + ψ

ψ

α + σ(1− α) 2+ηγ
1+ηγsjt

Zt

σ(1− α) + α

]
, (E-4)
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where I use results from Lemma 2. Note that 2+ηγ
1+ηγsjt

Zt ≤ 3/4, which implies that ΣEjt,Xjt

α+σ(1−α) 2+ηγ
1+ηγsjt

Zt

σ(1−α)+α <

1. Using this, inequality (E-4) holds if and only if

σ

ψ
≥ΣEjt,Xjt

−1 +
α+σ(1−α) 2+ηγ

1+ηγsjt
Zt

α+σ(1−α)

1− ΣEjt,Xjt

α+σ(1−α) 2+ηγ
1+ηγsjt

Zt

α+σ(1−α)

. (E-5)

2+ηγ
1+ηγsjt

Zt ≤ 3/4 implies that
α+σ(1−α) 2+ηγ

1+ηγsjt
Zt

α+σ(1−α) < 1, which implies that the right-hand side of

inequality (E-5) is negative. Thus, inequality (E-5) always holds and ∂Gj(Rjt, Rkt)/∂Rjt < 0.
The analysis of ∂Gk(Rjt, Rkt)/∂Rkt is virtually identical.

Now define the matrix G:

G ≜

[
∂Gj(Rjt,Rkt)

∂Rjt

∂Gj(Rjt,Rkt)

∂Rkt
∂Gk(Rjt,Rkt)

∂Rjt

∂Gk(Rjt,Rkt)

∂Rkt

]
.

We have:

Lemma 4. The determinant of G is positive.
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Proof. Analyze det(G):

det(G) ∝
{
− 1

ψ
− 1

σ
+

(
1

σ
− 1

ϵ

)[
ΣEjt,Rjt|Xjt + ΣEjt,Xjt

(
ΣXjt,Rjt + ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)]}
{
− 1

ψ
− 1

σ
+

(
1

σ
− 1

ϵ

)[
ΣEkt,Rkt|Xkt + ΣEkt,Xkt

(
ΣXkt,Rkt + ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

)]}
+

{
− 1

ψ
− 1

σ
+

(
1

σ
− 1

ϵ

)[
ΣEjt,Rjt|Xjt + ΣEjt,Xjt

(
ΣXjt,Rjt + ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)
− ΣEkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt

]}
{
1

ϵ

[
ΣYt,Ekt

(
ΣEkt,Rkt|Xkt + ΣEkt,XktΣXkt,Rkt + ΣEkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

)
+ ΣYt,EjtΣEjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rkt

]}
+

{
− 1

ψ
− 1

σ
+

(
1

σ
− 1

ϵ

)[
ΣEkt,Rkt|Xkt + ΣEkt,Xkt

(
ΣXkt,Rkt + ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

)
− ΣEjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rkt

]}
{
1

ϵ

[
ΣYt,Ejt

(
ΣEjt,Rjt|Xjt + ΣEjt,XjtΣXjt,Rjt + ΣEjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)
+ ΣYt,EktΣEkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt

]}
−
(
1

σ
− 1

ϵ

)2

ΣEjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,RktΣEkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt ,

where I factored GjGk/RjtRkt. Use ΣYt,Y jt + ΣYt,Ekt = 1 from Lemma 2 and cancel terms
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with 1/ϵ2 to obtain:

det(G) ∝
{
− 1

ψ
− 1

σ

[
1− ΣEjt,Rjt|Xjt − ΣEjt,Xjt

(
ΣXjt,Rjt + ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)]}
{
− 1

ψ
− 1

σ

[
1− ΣEkt,Rkt|Xkt − ΣEkt,Xkt

(
ΣXkt,Rkt + ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

)]}
− 1

σ

(
1

σ
− 1

ϵ

)(
ΣEjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rkt

) (
ΣEkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt

)
+

{
− 1

ψ
− 1

σ

}
1

ϵ
ΣYt,Ejt[

−
(
ΣEkt,Rkt|Xkt + ΣEkt,XktΣXkt,Rkt + ΣEkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

)
+ ΣEjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rkt

]
+

{
− 1

ψ
− 1

σ

}
1

ϵ
ΣYt,Ekt[

−
(
ΣEjt,Rjt|Xjt + ΣEjt,XjtΣXjt,Rjt + ΣEjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)
+ ΣEkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt

]
+

1

ϵ

1

σ

[
ΣEjt,Rjt|Xjt + ΣEjt,Xjt

(
ΣXjt,Rjt + ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)]
[
ΣEkt,Rkt|Xkt + ΣEkt,Xkt

(
ΣXkt,Rkt + ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

)]
. (E-6)

All lines after the first three are positive by results from Lemma 2. Expanding the products
in those first three lines and rearranging, those first three lines become:

1

ψ2

+
1

σ2

[
1− ΣX,R

]
ΣEjt,XjtΣEkt,Xkt

(
1− ΣX,R − ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt − ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)
+

1

ψ

1

σ
ΣEkt,Xkt

[
1− ΣX,R − ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

]
+

1

ψ

1

σ
ΣEjt,Xjt

[
1− ΣX,R − ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

]
+

1

σ

1

ϵ

(
ΣEjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rkt

) (
ΣEkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt

)
, (E-7)

where I write ΣX,R because this elasticity is the same in each sector. At corner allocations
of research, Σsjt,Rjt = Σsjt,Rkt = 0. In this case, (E-7) is clearly positive. Now assume an
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interior allocation of research, so that Πjt = Πkt. Note that

1− ΣX,R − ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt − ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

=
1

ψ

σ

σ(1− α) + α

{
ψ[1− α]− α− (1− α)[σ + ψ]

(2 + ηγ)2

(1 + ηγsjt)(1 + ηγskt)
Zt

}
. (E-8)

Substituting for Zt and using equation (12) at Πjt/Πkt = 1, we have

Zt
(1 + ηγsjt)(1 + ηγskt)

=
1

[2 + ηγ]2
.

Equation (E-8) then becomes

1− ΣX,R − ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt − ΣXjt,AjtΣAjt,sjtΣsjt,Rjt =− σ

ψ
.

Substituting into (E-7), the first three lines of (E-6) are equal to

1

ψ2

− 1

ψ

1

σ

[
1− ΣX,R

]
ΣEjt,XjtΣEkt,Xkt

+
1

ψ

1

σ
ΣEkt,Xkt

[
1− ΣX,R − ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

]
+

1

ψ

1

σ
ΣEjt,Xjt

[
1− ΣX,R − ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

]
+

1

σ

1

ϵ

(
ΣEjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rkt

) (
ΣEkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt

)
. (E-9)

The final line is positive. Factoring 1/ψ, the first four lines are jointly positive if and only if:

0 ≤ 1

ψ
+

1

σ

[
(1− ΣX,R)

(
ΣEjt,Xjt + ΣEkt,Xkt − ΣEjt,XjtΣEkt,Xkt

)
− ΣEjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rjt − ΣEkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

]
=
1

ψ
+

1

σ

(
ΣEjt,Xjt + ΣEkt,Xkt − ΣEjt,XjtΣEkt,Xkt

)
− 1

σ

σ + ψ

ψ

1

σ(1− α) + α

[
α
(
ΣEjt,Xjt + ΣEkt,Xkt − ΣEjt,XjtΣEkt,Xkt

)
+ σ(1− α)

(
ΣEjt,Xjt(1 + ηγskt) + ΣEkt,Xkt(1 + ηγsjt)

)
1

2 + ηγ

]
,

(E-10)
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where we use Zt
(1+ηγsjt)(1+ηγskt)

= 1
[2+ηγ]2

. Note that ΣEjt,Xjt + ΣEkt,Xkt − ΣEjt,XjtΣEkt,Xkt

increases in ΣEjt,Xjt and thus reaches a maximum at ΣEjt,Xjt = 1. Therefore,

ΣEjt,Xjt + ΣEkt,Xkt − ΣEjt,XjtΣEkt,Xkt ≤ 1 + ΣEkt,Xkt − ΣEkt,Xkt = 1.

Also note that ΣEjt,Xjt(1 + ηγskt) + ΣEkt,Xkt(1 + ηγsjt) increases in each elasticity, and each
elasticity is ≤ 1. Thus,

ΣEjt,Xjt(1 + ηγskt) + ΣEkt,Xkt(1 + ηγsjt) ≤ (1 + ηγskt) + (1 + ηγsjt) = 2 + ηγ,

which implies (
ΣEjt,Xjt(1 + ηγskt) + ΣEkt,Xkt(1 + ηγsjt)

)
1

2 + ηγ
≤ 1.

These results together imply that

α + σ(1− α)

≥α
(
ΣEjt,Xjt + ΣEkt,Xkt − ΣEjt,XjtΣEkt,Xkt

)
+ σ(1− α)

(
ΣEjt,Xjt(1 + ηγskt) + ΣEkt,Xkt(1 + ηγsjt)

)
1

2 + ηγ
.

(E-11)

Using this, we have that inequality (E-10) holds if and only if

σ

ψ
≥
{
−
(
ΣEjt,Xjt + ΣEkt,Xkt − ΣEjt,XjtΣEkt,Xkt

)
+

1

σ(1− α) + α

[
α
(
ΣEjt,Xjt + ΣEkt,Xkt − ΣEjt,XjtΣEkt,Xkt

)
+ σ(1− α)

(
ΣEjt,Xjt(1 + ηγskt) + ΣEkt,Xkt(1 + ηγsjt)

)
1

2 + ηγ

]}
{
1− 1

σ(1− α) + α

[
α
(
ΣEjt,Xjt + ΣEkt,Xkt − ΣEjt,XjtΣEkt,Xkt

)
+ σ(1− α)

(
ΣEjt,Xjt(1 + ηγskt) + ΣEkt,Xkt(1 + ηγsjt)

)
1

2 + ηγ

]}−1

.

(E-12)

The denominator on the right-hand side is positive via inequality (E-11). The numerator on
the right-hand side is equal to:(

ΣEjt,Xjt + ΣEkt,Xkt − ΣEjt,XjtΣEkt,Xkt

)−1 +
1

σ(1− α) + α

α + σ(1− α)

(
ΣEjt,Xjt(1 + ηγskt) + ΣEkt,Xkt(1 + ηγsjt)

)
(2 + ηγ)

(
ΣEjt,Xjt + ΣEkt,Xkt − ΣEjt,XjtΣEkt,Xkt

)

 .

(E-13)
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Consider the fraction in brackets. If that fraction is ≤ 1, then the whole expression is
negative and we are done. I will now prove that the fraction cannot be > 1. Assume that
the fraction is > 1. Then:(

ΣEjt,Xjt(1 + ηγskt) + ΣEkt,Xkt(1 + ηγsjt)

)
> (2 + ηγ)

(
ΣEjt,Xjt + ΣEkt,Xkt − ΣEjt,XjtΣEkt,Xkt

)
⇔ηγsktΣEjt,Xjt + ηγsjtΣEkt,Xkt ≥ (1 + ηγ)

(
ΣEjt,Xjt + ΣEkt,Xkt

)
− (2 + ηγ)ΣEjt,XjtΣEkt,Xkt .

Assume without loss of generality that ΣEjt,Xjt > ΣEkt,Xkt . Then the left-hand side of the
last line attains its largest possible value when skt = 1. The inequality on the last line is
then satisfied only if

0 > ΣEjt,Xjt + (1 + ηγ)ΣEkt,Xkt − (2 + ηγ)ΣEjt,XjtΣEkt,Xkt . (E-14)

The right-hand side is monotonic in ΣEjt,Xjt . At ΣEjt,Xjt = 1, the right-hand side is

1 + (1 + ηγ)ΣEkt,Xkt − (2 + ηγ)ΣEkt,Xkt = 1− ΣEkt,Xkt ≥ 0.

But this contradicts inequality (E-14). Now consider the other extremum: ΣEjt,Xjt = 0. The
right-hand side of inequality (E-14) becomes:

(1 + ηγ)ΣEkt,Xkt ≥ 0,

which again contradicts inequality (E-14). Because the right-hand side of inequality (E-14)
was monotonic in ΣEjt,Xjt and was not satisfied for either the greatest or smallest possible
values for ΣEjt,Xjt , the inequality is not satisfied for any values of ΣEjt,Xjt . Thus, the fraction
in brackets in (E-13) is ≤ 1, which means that the right-hand side of inequality (E-12) is
≤ 0 and inequality (E-12) is satisfied. As a result, the first three lines of (E-6) are positive,
which means that det(G) > 0.

The next two lemmas establish how relative resource use and relative profit change with
the average quality of technology in sector j:

Lemma 5. Define R(Ajt, Akt) ≜ [Rjt(Ajt, Akt)/Rkt(Ajt, Akt)]. Then (i) ∂R/∂Ajt > 0 and
(ii) ∂R/∂Ajt → 0 as Ajt → ∞.

Proof. I begin by using the implicit function theorem on the two-dimensional system ob-
tained from the versions of equation (A-4) corresponding to each resource. Rewriting previ-
ous expressions for Gj and Gk to hold sjt fixed at some value s, the two-dimensional system
becomes:

1 = κ νjA
ϵ−1
ϵ

Y

[
Yt (Rjt, Rkt, sjt = s)

Ejt (Rjt, sjt = s)

]1/ϵ [
Ejt (Rjt, sjt = s)

Rjt

]1/σ [
Rjt

Ψj

]−1/ψ

≜Hj(Rjt, Rkt; sjt = s),

1 = κ (1− νj)A
ϵ−1
ϵ

Y

[
Yt (Rjt, Rkt, sjt = s)

Ekt (Rkt, sjt = s)

]1/ϵ [
Ekt (Rkt, sjt = s)

Rkt

]1/σ [
Rkt

Ψk

]−1/ψ

≜Hk(Rjt, Rkt; sjt = s).

A-25



Fixing sjt = s makes Ajt a parameter. I analyze the following:

∂R(Ajt, Akt)

∂Ajt
=
Rjt

Rkt

{
∂Rjt

∂Ajt

1

Rjt

− ∂Rkt

∂Ajt

1

Rkt

}
=
Rjt

Rkt

{
1

Rjt

− ∂Hj
∂Ajt

∂Hk
∂Rkt

+
∂Hj
∂Rkt

∂Hk
∂Ajt

det(H)
− 1

Rkt

− ∂Hk
∂Ajt

∂Hj
∂Rjt

+ ∂Hk
∂Rjt

∂Hj
∂Ajt

det(H)

}
=
Rjt

Rkt

1

det(H)

{
− ∂Hj

∂Ajt

[
1

Rjt

∂Hk

∂Rkt

+
1

Rkt

∂Hk

∂Rjt

]
+
∂Hk

∂Ajt

[
1

Rjt

∂Hj

∂Rkt

+
1

Rkt

∂Hj

∂Rjt

]}
.

(E-15)

Differentiation and algebraic manipulations (including applying relationships from Lemma 2)
yield:

− ∂Hj

∂Ajt
=−Hj

{
1

σ
− 1

ϵ
ΣYt,Ekt

}
ΣEjt,XjtΣXjt,Ajt

1

Ajt
,

∂Hk

∂Ajt
=Hk

1

ϵ
ΣYt,EjtΣEjt,XjtΣXjt,Ajt

1

Ajt
,

1

Rjt

∂Hk

∂Rkt

+
1

Rkt

∂Hk

∂Rjt

=
Hk

RjtRkt

{
− 1

ψ
− 1

σ
ΣEkt,Xkt

[
1− ΣX,R

]
+

1

ϵ
ΣYt,Ejt

[
ΣX,R − 1

][
ΣEjt,Xjt − ΣEkt,Xkt

]}
,

1

Rjt

∂Hj

∂Rkt

+
1

Rkt

∂Hj

∂Rjt

=
Hj

RjtRkt

{
− 1

ψ
− 1

σ
ΣEjt,Xjt

[
1− ΣX,R

]
+

1

ϵ
ΣYt,Ekt

[
ΣX,R − 1

][
ΣEkt,Xkt − ΣEjt,Xjt

]}
.

Using these in equation (E-15), we obtain:

∂R(Ajt, Akt)

∂Ajt
=

1

Ajt

1

det(H)

Rjt

Rkt

HjHk

RjtRkt

ΣX,A

(
1

σ
− 1

ϵ

)
ΣEjt,Xjt

(
1

ψ
+

1

σ
ΣEkt,Xkt [1− ΣX,R]

)
.

(E-16)

Now consider det(H). It follows from our analysis of det(G) with Σs,R = 0. Make this
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change in equation (E-6):

det(H) =
HjHk

RjtRkt

({
− 1

ψ
− 1

σ

[
1− ΣEjt,Rjt|Xjt − ΣEjt,XjtΣXjt,Rjt

]}
{
− 1

ψ
− 1

σ

[
1− ΣEkt,Rkt|Xkt − ΣEkt,XktΣXkt,Rkt

]}
+

{
− 1

ψ
− 1

σ

}
1

ϵ
ΣYt,Ejt

[
−
(
ΣEkt,Rkt|Xkt + ΣEkt,XktΣXkt,Rkt

)]
+

{
− 1

ψ
− 1

σ

}
1

ϵ
ΣYt,Ekt

[
−
(
ΣEjt,Rjt|Xjt + ΣEjt,XjtΣXjt,Rjt

)]
+

1

ϵ

1

σ

[
ΣEjt,Rjt|Xjt + ΣEjt,XjtΣXjt,Rjt

][
ΣEkt,Rkt|Xkt + ΣEkt,XktΣXkt,Rkt

])
.

Now analyze, using relations in Lemma 2:

det(H) =
HjHk

RjtRkt

({
1

ψ
+

1

σ
ΣEjt,Xjt

[
1− ΣX,R

]}{
1

ψ
+

1

σ
ΣEkt,Xkt

[
1− ΣX,R

]}
+

{
1

ψ
+

1

σ

}
1

ϵ
ΣYt,Ejt

(
ΣEkt,Rkt|Xkt + ΣEkt,XktΣX,R

)
+

{
1

ψ
+

1

σ

}
1

ϵ
ΣYt,Ekt

(
ΣEjt,Rjt|Xjt + ΣEjt,XjtΣX,R

)
+

1

ϵ

1

σ

[
ΣEjt,Rjt|Xjt + ΣEjt,XjtΣX,R

][
ΣEkt,Rkt|Xkt + ΣEkt,XktΣX,R

])

=
HjHk

RjtRkt

({
1

ψ
+

1

σ
ΣEjt,Xjt

[
1− ΣX,R

]}{
1

ψ
+

1

σ
ΣEkt,Xkt

[
1− ΣX,R

]}
+

{
1

ψ
+

1

σ

}
1

ϵ
ΣYt,Ejt

[
1− ΣEkt,Xkt(1− ΣX,R)

]
+

{
1

ψ
+

1

σ

}
1

ϵ
ΣYt,Ekt

[
1− ΣEjt,Xjt(1− ΣX,R)

]
+

1

ϵ

1

σ

[
1− ΣEjt,Xjt(1− ΣX,R)

][
1− ΣEkt,Xkt(1− ΣX,R)

])
.
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From Lemma 2, 1− ΣX,R = σ
ψ
ψ[1−α]−α
σ(1−α)+α . Substituting det(H) into equation (E-16), we have:

∂R(Ajt, Akt)

∂Ajt
=

1

Ajt

Rjt

Rkt

ΣX,A

(
1

σ
− 1

ϵ

)
ΣEjt,Xjt

(
1

ψ
+

1

σ
ΣEkt,Xkt [1− ΣX,R]

)
({

1

ψ
+

1

σ
ΣEjt,Xjt

[
1− ΣX,R

]}{
1

ψ
+

1

σ
ΣEkt,Xkt

[
1− ΣX,R

]}
+

{
1

ψ
+

1

σ

}
1

ϵ
ΣYt,Ejt

[
1− ΣEkt,Xkt(1− ΣX,R)

]
+

{
1

ψ
+

1

σ

}
1

ϵ
ΣYt,Ekt

[
1− ΣEjt,Xjt(1− ΣX,R)

]
+

1

ϵ

1

σ

[
1− ΣEjt,Xjt(1− ΣX,R)

][
1− ΣEkt,Xkt(1− ΣX,R)

])−1

(E-17)

>0.

We have established the first part of the lemma. To establish the second part, use Lemma 2
in equation (E-17).

Lemma 6. Fix sjt = s. If σ > 1 or σ is not too much smaller than 1, then Πjt/Πkt increases
in Aj(t−1). As Aj(t−1) → ∞, Πjt/Πkt decreases in Aj(t−1) for all σ < 1.

Proof. To a first-order approximation, we have, with sjt fixed at s,

d ln[Πjt/Πkt]

dAj(t−1)

≈ 1

Aj(t−1)

[
1− 1

σ + α(1− σ)

]
+

1 + σ/ψ

σ + α(1− σ)

∂Ajt
∂Aj(t−1)

∂[Rjt/Rkt]

∂Ajt

Rkt

Rjt

=
1

Aj(t−1)

[
1− 1

σ + α(1− σ)

]
+

1

ψ

ψ + σ

σ + α(1− σ)
(1 + ηγs)

∂[Rjt/Rkt]

∂Ajt

Rkt

Rjt

=
1

Aj(t−1)

(1− α)(σ − 1)

σ + α(1− σ)
+

1

ψ

ψ + σ

σ + α(1− σ)
(1 + ηγs)

∂[Rjt/Rkt]

∂Ajt

Rkt

Rjt

.

The first term is positive if and only if σ > 1 and, using Lemma 5, the second term is
positive. Therefore the whole expression is positive if σ > 1. The first term becomes small
for σ close to 1. Therefore the second term dominates (and the whole expression is positive)
for σ not too much smaller than 1. Finally, Lemma 5 shows that the second term goes to 0 as
Aj(t−1) → ∞ if σ < 1. Therefore the whole expression is negative if σ < 1 and Aj(t−1) → ∞.

Finally, consider the evolution of relative resource use and thus of market size and resource
cost effects. From equation (13), Rjt/Rkt increases in sjt. Define ŝt+1 as the unique value of
sj(t+1) such that sector j’s share of resource resource use increases from time t to t+1 if and
only if sj(t+1) ≥ ŝt+1. Lemma 5 implies that ŝt+1 ∈ (0, 1).

A-28



Lemma 7. If σ < 1, then ŝt+1 ≥ 0.5 if and only if Aj(t−1)/Ak(t−1) ≥ [Ψj/Ψk]
1/[(1−α)(1+ψ)]. If

σ > 1, then ŝt+1 ≥ 0.5 if and only if Aj(t−1)/Ak(t−1) ≤ [Ψj/Ψk]
1/[(1−α)(1+ψ)].

Proof. The change in Rjt/Rkt from time t to t+ 1 is

Rj(t+1)

Rk(t+1)

− Rjt

Rkt

=
(Rj(t+1) −Rjt)Rkt − (Rk(t+1) −Rkt)Rjt

Rk(t+1)Rkt

∝
Rj(t+1) −Rjt

Rjt

−
Rk(t+1) −Rkt

Rkt

,

where the first equality adds and subtracts RjtRkt in the numerator and the second line
factors Rjt/Rk(t+1). To a first-order approximation, this is proportional to

1

Rjt

(
dRjt

dAjt

[
Aj(t+1) − Ajt

]
+

dRjt

dAkt

[
Ak(t+1) − Akt

])
− 1

Rkt

(
dRkt

dAjt

[
Aj(t+1) − Ajt

]
+

dRkt

dAkt

[
Ak(t+1) − Akt

])
,

with the derivatives evaluated at the time t allocation. Note that sjt is included in Ajt when
differentiating with respect to Ajt, which reflects that we will seek the allocation of scientists
that holds Rjt/Rkt constant. Defining Hj(Rjt, Rkt; sjt = s) and Hk(Rjt, Rkt; sjt = s) as in the
proof of Lemma 5 and using the implicit function theorem, the previous expression becomes:

1

Rjt

(
− ∂Hj
∂Ajt

∂Hk
∂Rkt

+
∂Hj
∂Rkt

∂Hk
∂Ajt

det(H)

[
Aj(t+1) − Ajt

]
+

− ∂Hj
∂Akt

∂Hk
∂Rkt

+
∂Hj
∂Rkt

∂Hk
∂Akt

det(H)

[
Ak(t+1) − Akt

])

− 1

Rkt

(
− ∂Hk
∂Ajt

∂Hj
∂Rjt

+ ∂Hk
∂Rjt

∂Hj
∂Ajt

det(H)

[
Aj(t+1) − Ajt

]
+

− ∂Hk
∂Akt

∂Hj
∂Rjt

+ ∂Hk
∂Rjt

∂Hj
∂Akt

det(H)

[
Ak(t+1) − Akt

])

∝
[
− ∂Hj

∂Ajt
sj(t+1)Ajt −

∂Hj

∂Akt
sk(t+1)Akt

] [
1

Rjt

∂Hk

∂Rkt

+
1

Rkt

∂Hk

∂Rjt

]
+

[
∂Hk

∂Ajt
sj(t+1)Ajt +

∂Hk

∂Akt
sk(t+1)Akt

] [
1

Rjt

∂Hj

∂Rkt

+
1

Rkt

∂Hj

∂Rjt

]
, (E-18)

where the second expression factors ηγ/det(H), which is readily seen to be positive by
altering the proof of Lemma 4 to set the Σs,R terms to zero. Differentiation and algebraic
manipulations (including applying relationships from Lemma 2) yield:

− ∂Hj

∂Ajt
sj(t+1)Ajt −

∂Hj

∂Akt
sk(t+1)Akt =−Hj

{
1

σ
− 1

ϵ
ΣYt,Ekt

}
ΣEjt,XjtΣXjt,Ajtsj(t+1)

−Hj
1

ϵ
ΣYt,EktΣEkt,XktΣXkt,Akt(1− sj(t+1)),

∂Hk

∂Ajt
sj(t+1)Ajt +

∂Hk

∂Akt
sk(t+1)Akt =Hk

{
1

σ
− 1

ϵ
ΣYt,Ejt

}
ΣEkt,XktΣXkt,Akt(1− sj(t+1))

+Hk
1

ϵ
ΣYt,EjtΣEjt,XjtΣXjt,Ajtsj(t+1).
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Substitute these and expressions derived in the proof of Lemma 5 into (E-18) and factor
ΣX,AHjHk/[RjtRkt]:{

− sj(t+1)

{
1

σ
− 1

ϵ
ΣYt,Ekt

}
ΣEjt,Xjt − (1− sj(t+1))

1

ϵ
ΣYt,EktΣEkt,Xkt

}
{
− 1

ψ
− 1

σ
ΣEkt,Xkt

[
1− ΣX,R

]}
+

{
(1− sj(t+1))

{
1

σ
− 1

ϵ
ΣYt,Ejt

}
ΣEkt,Xkt + sj(t+1)

1

ϵ
ΣYt,EjtΣEjt,Xjt

}
{
− 1

ψ
− 1

σ
ΣEjt,Xjt

(
1− ΣX,R

)}
+

1

ϵ

[
1− ΣX,R

][
ΣEkt,Xkt − ΣEjt,Xjt

]
{
− sj(t+1)

[
1

σ
− 1

ϵ
ΣYt,Ekt

]
ΣYt,EjtΣEjt,Xjt − (1− sj(t+1))

{
1

σ
− 1

ϵ
ΣYt,Ejt

}
ΣYt,EktΣEkt,Xkt

}
− 1

ϵ2
ΣYt,EjtΣYt,Ekt

[
1− ΣX,R

][
ΣEkt,Xkt − ΣEjt,Xjt

]{
(1− sj(t+1))ΣEkt,Xkt + sj(t+1)ΣEjt,Xjt

}
=sj(t+1)ΣEjt,Xjt

{
1

ψ

[
1

σ
− 1

ϵ
ΣYt,Ekt −

1

ϵ
ΣYt,Ejt

]
+

1

σ

(
1− ΣX,R

)[
1

σ
ΣEkt,Xkt −

1

ϵ
ΣYt,EktΣEkt,Xkt −

1

ϵ
ΣYt,EjtΣEjt,Xjt

]}
− (1− sj(t+1))ΣEkt,Xkt

{
1

ψ

[
1

σ
− 1

ϵ
ΣYt,Ejt −

1

ϵ
ΣYt,Ekt

]
+

1

σ

(
1− ΣX,R

)[
1

σ
ΣEjt,Xjt −

1

ϵ
ΣYt,EjtΣEjt,Xjt −

1

ϵ
ΣYt,EktΣEkt,Xkt

]}
+

1

ϵ

[
1− ΣX,R

][
ΣEkt,Xkt − ΣEjt,Xjt

]
{
− sj(t+1)

[
1

σ
− 1

ϵ
ΣYt,Ekt

]
ΣYt,EjtΣEjt,Xjt − (1− sj(t+1))

{
1

σ
− 1

ϵ
ΣYt,Ejt

}
ΣYt,EktΣEkt,Xkt

− 1

ϵ
ΣYt,EjtΣYt,Ekt

[
(1− sj(t+1))ΣEkt,Xkt + sj(t+1)ΣEjt,Xjt

]}
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=sj(t+1)ΣEjt,Xjt

{
1

ψ

[
1

σ
− 1

ϵ

]
+

1

σ

(
1− ΣX,R

)[
1

σ
− 1

ϵ
ΣYt,Ekt

]
ΣEkt,Xkt

}
− (1− sj(t+1))ΣEkt,Xkt

{
1

ψ

[
1

σ
− 1

ϵ

]
+

1

σ

(
1− ΣX,R

)[
1

σ
− 1

ϵ
ΣYt,Ejt

]
ΣEjt,Xjt

}
− sj(t+1)

1

σ

1

ϵ

[
1− ΣX,R

]
ΣYt,EjtΣEjt,XjtΣEkt,Xkt + (1− sj(t+1))

1

σ

1

ϵ

[
1− ΣX,R

]
ΣYt,EktΣEkt,XktΣEjt,Xjt

=
1

ψ

[
1

σ
− 1

ϵ

][
sj(t+1)ΣEjt,Xjt − (1− sj(t+1))ΣEkt,Xkt

]
+

1

σ2

(
1− ΣX,R

)
ΣEkt,XktΣEjt,Xjt

(
2sj(t+1) − 1

)
− 1

σ

1

ϵ

(
1− ΣX,R

)
ΣEjt,XjtΣEkt,Xkt

(
2sj(t+1) − 1

)
=
1

ψ

[
1

σ
− 1

ϵ

][
sj(t+1)ΣEjt,Xjt − (1− sj(t+1))ΣEkt,Xkt

]
+

1

σ

(
1

σ
− 1

ϵ

)(
1− ΣX,R

)
ΣEkt,XktΣEjt,Xjt

(
2sj(t+1) − 1

)
.

Substituting for ΣX,R and rearranging, we obtain

1

ψ

(
1

σ
− 1

ϵ

)[
sj(t+1)ΣEjt,Xjt

(
1 +

ψ[1− α]− α

σ(1− α) + α
ΣEkt,Xkt

)
− (1− sj(t+1))ΣEkt,Xkt

(
1 +

ψ[1− α]− α

σ(1− α) + α
ΣEjt,Xjt

)]
. (E-19)

This expression is positive if and only if the term in brackets is positive. Define ŝt+1 as the
sj(t+1) such that Rjt/Rkt = Rj(t+1)/Rk(t+1). Then ŝt+1 is the root of the term in brackets.
Solving for that root, we have:

ŝt+1 =
ΣEkt,XktCjt

ΣEjt,XjtCkt + ΣEkt,XktCjt
, (E-20)

where Σw,z is the elasticity of w with respect to z and where

Cjt ≜1 +
1− α

σ(1− α) + α

[
ψ − α

1− α

]
ΣEjt,Xjt > 0,

Ckt ≜1 +
1− α

σ(1− α) + α

[
ψ − α

1− α

]
ΣEkt,Xkt > 0.

Thus, {
ŝt+1 ≥

1

2

}
⇔
{
ΣEkt,Xkt ≥ ΣEjt,Xjt

}
,

where the right-hand side is evaluated at ŝt+1. Using the explicit expressions for the elas-
ticities, for intermediate-good production, and for Xjt and Xkt (see equation (E-2)), we
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have:

ΣEkt,Xkt ≥ΣEjt,Xjt

⇔ 0 ≤
(1− κ)X

σ−1
σ

kt E
σ−1
σ

jt − (1− κ)X
σ−1
σ

jt E
σ−1
σ

kt

E
σ−1
σ

kt E
σ−1
σ

jt

(E-21)

⇔ 0 ≤X
σ−1
σ

kt E
σ−1
σ

jt −X
σ−1
σ

jt E
σ−1
σ

kt

⇔ 0 ≤κR
σ−1
σ

jt X
σ−1
σ

kt + (1− κ)X
σ−1
σ

jt X
σ−1
σ

kt − κR
σ−1
σ

kt X
σ−1
σ

jt − (1− κ)X
σ−1
σ

kt X
σ−1
σ

jt

⇔ 1 ≤


Rjt

[
1−κ
κ

(
Rkt
Ψk

)1/ψ] ασ
σ(1−α)+α [

Rkt
Akt

] α
σ(1−α)+α

Akt

Rkt

[
1−κ
κ

(
Rjt
Ψj

)1/ψ] ασ
σ(1−α)+α [

Rjt
Ajt

] α
σ(1−α)+α

Ajt


σ−1
σ

⇔ 1 ≤

[(
Ψj

Ψk

) ασ/ψ
σ(1−α)+α

(
Rjt

Rkt

)σ(1−α−α/ψ)
σ(1−α)+α

(
Akt
Ajt

) σ(1−α)
σ(1−α)+α

]σ−1
σ

⇔ 1 ≤
(
Ψj

Ψk

)χ 1
ψ
[α+σ(1−α)](

1 + ηγsjt
1 + ηγskt

)−χ 1
ψ
[α+σ(1−α)](Aj(t−1)

Ak(t−1)

)χ(1−α)[(1−σ)(1−α−α/ψ)−(1+σ/ψ)]

,

(E-22)

where the final line substitutes for Rjt/Rkt from equation (12) (which must hold for ŝt+1

interior) and where

χ ≜
σ − 1

[σ(1− α) + α][1 + σ/ψ]
< 0 iff σ < 1.

The right-hand side of inequality (E-22) is increasing in sjt if and only if σ < 1. Therefore,
if σ < 1, then ŝt+1 ≥ 0.5 if and only if the strict version of the inequality does not hold at
sjt = 0.5, and if σ > 1, then ŝt+1 ≥ 0.5 if and only if the inequality holds at sjt = 0.5. If
σ < 1, then ŝt+1 ≥ 0.5 if and only if

Aj(t−1)

Ak(t−1)

≥
[
Ψj

Ψk

]θ
,

and if σ > 1, then ŝt+1 ≥ 0.5 if and only if

Aj(t−1)

Ak(t−1)

≤
[
Ψj

Ψk

]θ
,

where

θ ≜
− 1
ψ
[α + σ(1− α)]

(1− α)[(1− σ)(1− α− α/ψ)− (1 + σ/ψ)]
=

1

(1− α)(1 + ψ)
> 0.
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E.3 Proof of Proposition 4

The tâtonnement adjustment process generates, to constants of proportionality, the following
system for finding the equilibrium within period t:

Ṙjt =h

(
Gj(Rjt, Rkt)− 1

)
,

Ṙkt =h

(
Gk(Rjt, Rkt)− 1

)
,

where dots indicate time derivatives (with the fictional time for finding an equilibrium here
flowing within a period t), h(0) = 0, and h′(·) > 0. The system’s steady state occurs at the
equilibrium values, which I denote with stars. Linearizing around the steady state, we have[

Ṙjt

Ṙkt

]
≈h′(0)

[
∂Gj(Rjt,Rkt)

∂Rjt

∂Gj(Rjt,Rkt)

∂Rkt
∂Gk(Rjt,Rkt)

∂Rjt

∂Gk(Rjt,Rkt)

∂Rkt

][
Rjt −R∗

jt

Rkt −R∗
kt

]
= h′(0)G

[
Rjt −R∗

jt

Rkt −R∗
kt

]
,

where G is the 2×2 matrix of derivatives, each evaluated at (R∗
jt, R

∗
kt). Lemma 3 implies

that the trace of G is strictly negative, in which case at least one of the two eigenvalues must
be strictly negative. Lemma 4 shows that det(G) > 0, which means that both eigenvalues
must have the same sign. Therefore both eigenvalues are strictly negative. The linearized
system is therefore globally asymptotically stable, and, by Lyapunov’s Theorem of the First
Approximation, the full nonlinear system is locally asymptotically stable around the equi-
librium.

E.4 Proof of Corollary 1

Now treat the versions of equation (A-4) corresponding to each resource as functions of Rjt,
Rkt, and sjt (recognizing that skt = 1− sjt):

1 = κ νjA
ϵ−1
ϵ

Y

[
Yt(Rjt, Rkt, sjt)

Ejt(Rjt, sjt)

]1/ϵ [
Ejt(Rjt, sjt)

Rjt

]1/σ [
Rjt

Ψj

]−1/ψ

≜Ĝj(Rjt, Rkt; sjt),

1 = κ (1− νj)A
ϵ−1
ϵ

Y

[
Yt(Rjt, Rkt, sjt)

Ekt(Rkt, sjt)

]1/ϵ [
Ekt(Rkt, sjt)

Rkt

]1/σ [
Rkt

Ψk

]−1/ψ

≜Ĝk(Rjt, Rkt; sjt).

This system of equations implicitly defines Rjt and Rkt as functions of the parameter sjt.

Define the matrix Ĝ analogously to the matrix G. Using the implicit function theorem, we
have

∂Rjt

∂sjt
=
−∂Ĝj
∂sjt

∂Ĝk
∂Rkt

+
∂Ĝj
∂Rkt

∂Ĝk
∂sjt

det(Ĝ)
and

∂Rkt

∂sjt
=

−∂Ĝk
∂sjt

∂Ĝj
∂Rjt

+ ∂Ĝk
∂Rjt

∂Ĝj
∂sjt

det(Ĝ)
.
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Interpreting equation (12) as implicitly defining sjt as a function of Rjt and Rkt, we have:

∂sjt
∂Rjt

= −
∂[Πjt/Πkt]

∂Rjt

∂[Πjt/Πkt]

∂sjt

and
∂sjt
∂Rkt

= −
∂[Πjt/Πkt]

∂Rkt
∂[Πjt/Πkt]

∂sjt

,

and thus

∂[Πjt/Πkt]

∂Rjt

= −∂[Πjt/Πkt]

∂sjt

∂sjt
∂Rjt

and
∂[Πjt/Πkt]

∂Rkt

= −∂[Πjt/Πkt]

∂sjt

∂sjt
∂Rkt

.

Using these expressions, consider how the right-hand side of equation (E-1) changes in sjt:

d[Πjt/Πkt]

dsjt
=
∂[Πjt/Πkt]

∂sjt
+
∂[Πjt/Πkt]

∂Rjt

∂Rjt

∂sjt
+
∂[Πjt/Πkt]

∂Rkt

∂Rkt

∂sjt

=
∂[Πjt/Πkt]

∂sjt

− ∂[Πjt/Πkt]

∂sjt

∂sjt
∂Rjt

−∂Ĝj
∂sjt

∂Ĝk
∂Rkt

+
∂Ĝj
∂Rkt

∂Ĝk
∂sjt

det(Ĝ)
− ∂[Πjt/Πkt]

∂sjt

∂sjt
∂Rkt

−∂Ĝk
∂sjt

∂Ĝj
∂Rjt

+ ∂Ĝk
∂Rjt

∂Ĝj
∂sjt

det(Ĝ)

∝− ∂Ĝj

∂Rjt

∂Ĝk

∂Rkt

+
∂Ĝj

∂Rkt

∂Ĝk

∂Rjt

− ∂sjt
∂Rjt

∂Ĝj

∂sjt

∂Ĝk

∂Rkt

+
∂sjt
∂Rjt

∂Ĝj

∂Rkt

∂Ĝk

∂sjt
− ∂sjt
∂Rkt

∂Ĝk

∂sjt

∂Ĝj

∂Rjt

+
∂sjt
∂Rkt

∂Ĝk

∂Rjt

∂Ĝj

∂sjt

=−
(
∂Ĝj

∂Rjt

∂Ĝk

∂Rkt

+
∂Ĝj

∂sjt

∂sjt
∂Rjt

∂Ĝk

∂Rkt

+
∂Ĝj

∂Rjt

∂Ĝk

∂sjt

∂sjt
∂Rkt

)
+
∂Ĝj

∂Rkt

∂Ĝk

∂Rjt

+
∂Ĝj

∂sjt

∂sjt
∂Rkt

∂Ĝk

∂Rjt

+
∂Ĝj

∂Rkt

∂Ĝk

∂sjt

∂sjt
∂Rjt

=− det(G).

The third expression factored det(Ĝ), which is positive by the proof of Proposition 4 for
a corner solution in sjt, and it also factored ∂[Πjt/Πkt]/∂sjt, which is negative. The final
equality recognizes that the only difference between the equations with a hat and the equa-
tions without a hat are that the equations without a hat allow sjt to vary with Rjt and
Rkt. Lemma 4 showed that det(G) > 0. Thus the right-hand side of equation (E-1) strictly
decreases in sjt.

E.5 Proof of Lemma 1

Under the given assumption that ν = 0.5 and Ψj = Ψk, we have Rjt = Rkt when Aj(t−1) =
Ak(t−1) and sjt = 0.5. Therefore, it is easy to see that Πjt/Πkt = 1 at sjt = 0.5 when
Aj(t−1) = Ak(t−1). By Lemma 6, increasing Aj(t−1) increases Πjt/Πkt if either σ > 1 or σ
is not too much smaller than 1. In those cases, Corollary 1 gives us that Aj(t−1) > Ak(t−1)

implies s∗jt > 0.5. The lemma follows from observing that Aj(t−1) > Ak(t−1) and Ψj = Ψk

imply that Aj(t−1)/Ak(t−1) > (Ψj/Ψk)
1/[(1−α)(1+ψ)].
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E.6 Proof of Proposition 1

To start, let Assumption 1 hold. From Lemma 7, ŝt+1 < 0.5. Therefore sjt0 > ŝt+1. Assume
that sj(t0+1) < sjt0 . From equation (12), Πj(t0+1)/Πk(t0+1) increases in Ajt0/Akt0 for any
given sj(t0+1) if σ > 1. Therefore, for the equilibrium to have sj(t0+1) < sjt0 , it must be
true that Rjt0/Rkt0 > Rj(t0+1)/Rk(t0+1) and thus sj(t0+1) < ŝt0+1. From Corollary 1 and
sjt0 > ŝt0+1, it must be true that Πjt0/Πkt0 > 1 when evaluated at ŝt0+1. Because Rjt0/Rkt0 =
Rj(t0+1)/Rk(t0+1) if sj(t0+1) = ŝt0+1 and Ajt0/Akt0 > Aj(t0−1)/Ak(t0−1) by sjt0 > 0.5, it therefore
must be true that Πj(t0+1)/Πk(t0+1) > 1 when evaluated at ŝt0+1. By Corollary 1, it then must
be true that sj(t0+1) > ŝt0+1. We have a contradiction. It must be true that sj(t0+1) ≥ sjt0 .

Because sj(t0+1) ≥ sjt0 > 0.5 > ŝt+1, it follows that Rjt0/Rkt0 ≤ Rj(t0+1)/Rk(t0+1) and
Ajt0/Akt0 > Aj(t0−1)/Ak(t0−1). Therefore Assumption 1 still holds at time t0 + 1. Proceeding
by induction, sector j’s shares of research and resource use increase forever: resource j is
locked-in from time t0 if σ > 1 and Assumption 1 holds at time t0. We have established the
first part of the proposition.

Now consider the remaining parts of the proposition, no longer imposing Assumption 1.
We know that Π∗

jt/Π
∗
kt = 1 when s∗jt ∈ (0, 1). Assume that s∗jt ∈ (0.5, 1). By Lemma 6,

Πj(t+1)/Πk(t+1) > 1 when evaluated at s∗jt. Therefore, by Corollary 1, s∗j(t+1) > s∗jt. Analogous

arguments apply when s∗jt ∈ (0, 0.5). We have established the second part of the proposition.
By the foregoing, the only possible steady states are at s∗jt = 0.5, s∗jt = 0, and s∗jt = 1.

We just saw that a steady state at s∗jt = 0.5 cannot be stable (should it even exist). When
s∗jt = 1, only Aj(t−1) changes over time, increasing by ηγAj(t−1) at each time t. By Lemma 6,
Πj(t0+1)/Πk(t0+1) > Πjt0/Πkt0 if sj(t0+1) ≥ sjt0 . If sjt0 = 1, then Πjt0 > Πkt0 , in which case
Πj(t0+1) > Πk(t0+1) if sj(t0+1) = sjt0 . It is then an equilibrium for s∗jt to equal 1 for all t ≥ t0.
An analogous proof covers the case where s∗jt = 0.

E.7 Proof of Proposition 2

First consider whether a corner allocation can persist indefinitely. If s∗jt = 1 for all t ≥ t0,
then Aj(t−1) → ∞ as t → ∞ and, by Lemma 5, Rjt/Rkt goes to a constant. In that case,
from equation (12), Πjt/Πkt goes to zero for all sjt. But Πjt/Πkt cannot be zero if s∗jt = 1
because s∗jt = 1 implies that Πjt/Πkt ≥ 1. We have contradicted the assumption that s∗jt = 1
for all t ≥ t0. Analogous arguments show that it cannot be true that s∗kt = 1 for all t ≥ t0.
It therefore must be true that, for all t0, there exists some t > t0 such that s∗jt ∈ (0, 1).

Because a corner research allocation cannot persist indefinitely, Ajt and Akt both become
arbitrarily large as t becomes large. From equations (A-2), (7), and (2), we have

Xjt =


[(

Rjt

Ψj

)1/ψ
1− κ

κ

] σ(1−α)
σ(1−α)+α [

Rjt

Ajt

] 1−α
σ(1−α)+α


α

1−α

Ajt

=

[
Ψ

−1/ψ
j

1− κ

κ

] σα
σ(1−α)+α

A
σ(1−α)

σ(1−α)+α
jt R

α(1+σ/ψ)
σ(1−α)+α
jt .
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Xjt and Xkt thus also become arbitrarily large as t becomes large. This in turn implies that
Ejt → κ

σ
σ−1Rjt and Ekt → κ

σ
σ−1Rkt as t becomes large. From equation (13), we have:[
Rjt

Rkt

] 1
σ
+ 1
ψ

→ ν

1− ν

[
Ψj

Ψk

]1/ψ [
Rjt

Rkt

] 1
σ
− 1
ϵ

as t becomes large. Therefore, as t→ ∞,

Rjt

Rkt

→

{
ν

1− ν

[
Ψj

Ψk

]1/ψ} ϵψ
ϵ+ψ

. (E-23)

Define Ωt ≜ Ajt/Akt, so that

Ωt =
1 + ηγsjt

1 + ηγ(1− sjt)
Ωt−1. (E-24)

Because a corner allocation cannot persist indefinitely, Π∗
jt/Π

∗
kt = 1 for some t sufficiently

large. Using this and equation (E-23) in equation (12), we have:

1 + ηγs∗jt
1 + ηγ(1− s∗jt)

=Ω
−(1−σ)(1−α)
t−1

{ ν

1− ν

[
Ψj

Ψk

]1/ψ} ϵψ
ϵ+ψ

1+σ/ψ [
Ψj

Ψk

]−σ/ψ
.

Therefore, from equation (E-24),

Ωt = Ω
1−(1−σ)(1−α)
t−1

{ ν

1− ν

[
Ψj

Ψk

]1/ψ} ϵψ
ϵ+ψ

1+σ/ψ [
Ψj

Ψk

]−σ/ψ
.

Define Ω̃t ≜ ln[Ωt]. We then have:

Ω̃t = [1− (1− σ)(1− α)]Ω̃t−1 + ln


{ ν

1− ν

[
Ψj

Ψk

]1/ψ} ϵψ
ϵ+ψ

1+σ/ψ [
Ψj

Ψk

]−σ/ψ .
This is a linear difference equation. For σ < 1, the coefficient on Ω̃t−1 is strictly between 0
and 1. The linear difference equation is therefore stable. The system approaches a steady
state in Ω̃t and therefore in Ωt. From equation (E-24), any steady state in Ωt must have
s∗jt = 0.5. Therefore as t→ ∞, s∗jt → 0.5. We have established the first result.

Equation (E-23) implies that if νj = 0.5 and Ψj = Ψk then R
∗
jt = R∗

kt. Further, if νj ≥ 0.5
and Ψj ≥ Ψk with at least one inequality being strict, then R∗

jt > R∗
kt. Now substitute into
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equation (12) and use sjt = 0.5:

Πjt

Πkt

→
(
Aj(t−1)

Ak(t−1)

)−(1−σ)(1−α)
σ+α(1−σ)

{ ν

1− ν

[
Ψj

Ψk

]1/ψ} ϵψ
ϵ+ψ


1+σ/ψ

σ+α(1−σ) [
Ψj

Ψk

] −σ/ψ
σ+α(1−σ)

=

(
Aj(t−1)

Ak(t−1)

)−(1−σ)(1−α)
σ+α(1−σ)

(
νj

1− νj

) σ+ψ
σ+α(1−σ)

ϵ
ϵ+ψ
(
Ψj

Ψk

) ϵ−σ
σ+α(1−σ)

1
ϵ+ψ

,

and this must equal 1 because s∗jt = 0.5. Therefore, if νj = 0.5 and Ψj = Ψk then Ajt = Akt,
and if νj ≥ 0.5 and Ψj ≥ Ψk with at least one inequality being strict, then Ajt > Akt. We
have established the second and third results.

Finally, as t becomes large along a path with s∗jt = 0.5, using previous results in equa-
tion (A-4) yields:[

Rjt

Ψj

]1/ψ
→κ νjA

ϵ−1
ϵ

Y

[
Ejt
Yt

]−1/ϵ [
Rjt

Ejt

]−1/σ

=κ νjA
ϵ−1
ϵ

Y

[
κ

σ
σ−1Rjt

Yt

]−1/ϵ [
κ

σ
σ−1

]1/σ

=κ νjA
ϵ−1
ϵ

Y

 κ
σ
σ−1Rjt

AYEjt

(
νj + (1− νj)

(
Ekt
Ejt

) ϵ−1
ϵ

) ϵ
ϵ−1


−1/ϵ [

κ
σ
σ−1

]1/σ

=κ νjA
ϵ−1
ϵ

Y

 1

AY

(
νj + (1− νj)

(
Rkt
Rjt

) ϵ−1
ϵ

) ϵ
ϵ−1


−1/ϵ [

κ
σ
σ−1

]1/σ

=νjκ
σ
σ−1AY

[
νj + (1− νj)

(
Rkt

Rjt

) ϵ−1
ϵ

] 1
ϵ−1

. (E-25)

From equation (E-23), R∗
jt/R

∗
kt becomes constant as t becomes large. Then from (E-25), R∗

jt

approaches a constant. An analogous derivation establishes that R∗
kt approaches a constant.

We have established the final result.

E.8 Proof of Proposition 3

Let time w ≥ t0 be the first time after t0 at which sector j’s share of resource use be-
gins decreasing, so that Rjx/Rkx ≤ Rj(x+1)/Rk(x+1) for all x ∈ [t0, w − 1] and Rjw/Rkw >
Rj(w+1)/Rk(w+1), which in turn requires sjx ≥ ŝx for all x ∈ [t0 + 1, w] and sj(w+1) < ŝw+1.
Note that sjt0 > 0.5 implies that Ajt0/Akt0 > Aj(t0−1)/Ak(t0−1). Assume that sector j’s share
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of research begins declining sometime after its share of resource use does, so that sjx ≤ sj(x+1)

for all x ∈ [t0, w]. Then we have Ajx/Akx > Aj(x−1)/Ak(x−1) for all x ∈ [t0, w + 1], and thus
Ajx/Akx > [Ψj/Ψk]

θ for all x ∈ [t0, w+1]. Using this with Lemma 7 and σ < 1 then implies
ŝx+1 ≥ 0.5 for all x ∈ [t0, w + 2]. Combining this with the requirement that sjw ≥ ŝw,
we have sjw ≥ 0.5. From equation (12) and σ < 1, we then have sj(w+1) ≥ sjw only
if Rjw/Rkw ≤ Rj(w+1)/Rk(w+1). But that contradicts the definition of w, which required
Rjw/Rkw > Rj(w+1)/Rk(w+1). Sector j’s share of research must have begun declining no later
than time w. We have shown that a transition in resource use occurs only after a transition
in research.

We now have two possibilities. We will see that the first one implies that sjx ≥ 0.5 at all
times x ∈ [t+ 1, w] and the second one generates a contradiction.

First, we could have Aj(x−2)/Ak(x−2) ≥ [Ψj/Ψk]
θ at all times x ∈ [t0 + 1, w]. Then by

Lemma 7, ŝx ≥ 0.5 at all times x ∈ [t0 + 1, w]. The definition of time w then requires
sjx ≥ 0.5 at all times x ∈ [t0 + 1, w].

Second, we could have Aj(x−2)/Ak(x−2) < [Ψj/Ψk]
θ at some time x ∈ [t0 + 1, w]. In order

for this to happen, it must be true that sjx < 0.5 at some times x ∈ [t0+2, w].18 Let z be the
first time at which sjx < 0.5. Aj(t0−1)/Ak(t0−1) > [Ψj/Ψk]

θ and sjx ≥ 0.5 for all x ∈ [t0, z− 1]
imply that Aj(z−2)/Ak(z−2) > [Ψj/Ψk]

θ, which implies by Lemma 7 and σ < 1 that ŝz ≥ 0.5.
So we have sjz < ŝz, which means that Rj(z−1)/Rk(z−1) > Rjz/Rkz. But this contradicts
the definition of time w as the first time at which sector j’s share of resource use begins
decreasing.

Therefore, we must have Aj(x−2)/Ak(x−2) ≥ [Ψj/Ψk]
θ and sjx ≥ 0.5 at all times x ∈

[t0 + 1, w]. Observe that sjx ≥ 0.5 at all times x ∈ [t0, w] implies Ajx/Akx ≥ Aj(x−1)/Ak(x−1)

at all times x ∈ [t0, w]. We have shown that a transition in technology happens only after a
transition in resource use. We have established the first part of the proposition.

Now consider the first time z > t0 at which Rjz < Rkz. Assume that Ψj ≥ Ψk and
that sjx ≥ 0.5 for x ∈ [t0, z]. Assumption 1, Ψj ≥ Ψk, and sjx ≥ 0.5 imply Ajx ≥ Akx for
x ∈ [t0, z]. Using σ < 1, we see that Aj(z−1) ≥ Ak(z−1), Ψj ≥ Ψk, and Rjz < Rkz imply that
the right-hand side of equation (E-1) is < 1 when evaluated at sjz = 0.5. So by Corollary 1,
time z equilibrium scientists must be less than 0.5. But sjz < 0.5 contradicts sjx ≥ 0.5 for
x ∈ [t0, z]. Therefore, if Ψj ≥ Ψk, then there must be some time x ∈ [t0, z] at which sjx < 0.5.
We have shown that if Ψj ≥ Ψk, then sector k must begin dominating research before it
begins dominating resource use. We have established the second part of the proposition.

Finally, let νj = νk and Ψj = Ψk. By Proposition 2, Ajt = Akt in the steady-state
research allocation. But Assumption 1 ensures that Ajt0 > Akt0 . Thus there exists t1 > t0
such that sjt1 < 0.5. By the foregoing parts of this proposition, a transition in research, a
transition in resource use, and a transition in technology must happen between t0 and t1.
We have established the third part of the proposition.

18Recall that sjt ≥ 0.5 and sj(t+1) ≥ sjt imply sj(t+1) ≥ 0.5.
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E.9 Intermediate steps for Cobb-Douglas special case

Substituting the Cobb-Douglas forms, equation (13) becomes[
Rjt

Rkt

]ψ+1
ψ

−κ ϵ−1
ϵ

=
νj
νk

[
Ψj

Ψk

]1/ψ [
Xjt

Xkt

](1−κ) ϵ−1
ϵ

.

Substituting equation (A-1) into equation (A-2) and then using equation (2), we have:

Xjt =

[
1− κ

κ
R

ψ+1
ψ

jt Ψ
−1/ψ
j

]α
A1−α
jt .

We then have equation (15).

E.10 Intermediate steps for Leontief special case

From equation (A-2) and Rjt = Xjt,

pjXt =

(
Rjt

Ajt

) 1−α
α

.

Equation (17) follows from equation (6).
From equation (A-2),

pjXtXjt = X
1/α
jt A

− 1−α
α

jt .

And from equation (2),

pjRtRjt = Ψ
−1/ψ
j R

1+ψ
ψ

jt .

Intermediate good producers’ zero-profit condition is

pjtEjt =Ψ
−1/ψ
j R

1+ψ
ψ

jt +X
1/α
jt A

− 1−α
α

jt .

Substituting for pjt from the final good producers’ first-order condition and then setting
Xjt = Rjt and Ejt = Rjt, we have:

νjY
1/ϵ
t = A

1−ϵ
ϵ

Y R
1−ϵ
ϵ

jt

[
Ψ

−1/ψ
j R

1+ψ
ψ

jt +R
1/α
jt A

− 1−α
α

jt

]
.

Using ψ = α/(1− α), we have:

νjY
1/ϵ
t =A

1−ϵ
ϵ

Y R
1−ϵ
ϵ

+ 1
α

jt

[
Ψ

− 1−α
α

j + A
− 1−α

α
jt

]
.

An analogous result holds for sector k. Equation (16) follows.
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Now consider the steady-state research allocation. For s ∈ (0, 1), Aj(t−1) and Ak(t−1)

become arbitrarily large as t increases. From equations (16) and (17), we have:

lim
t→∞

Πjt

Πkt

→
(
Aj(t−1)

Ak(t−1)

)− 1−α
α
(

1 + ηγs

1 + ηγ(1− s)

)− 1
α

(
νj
νk

[
Ψj

Ψk

] 1−α
α

) ϵ
α+(1−α)ϵ

. (E-26)

At an equilibrium with s ∈ (0, 1), Πjt = Πkt. Then, for t sufficiently large,(
1 + ηγs

1 + ηγ(1− s)

) 1
α

=

(
Aj(t−1)

Ak(t−1)

)− 1−α
α

(
νj
νk

[
Ψj

Ψk

] 1−α
α

) ϵ
α+(1−α)ϵ

.

At a steady state, Aj(t−1) = (1 + ηγs)∆Aj(t−1−∆) and Ak(t−1) = (1 + ηγ(1 − s))∆Ak(t−1−∆).
Therefore the following must hold for all ∆ ≥ 0:(

1 + ηγs

1 + ηγ(1− s)

) 1
α

=

(
1 + ηγs

1 + ηγ(1− s)

)−∆ 1−α
α
(
Aj(t−1−∆)

Ak(t−1−∆)

)− 1−α
α

(
νj
νk

[
Ψj

Ψk

] 1−α
α

) ϵ
α+(1−α)ϵ

.

This implies equation (18).
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