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Figure A.2: Count of Included Studies per Year
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Table A.1: Summary of per-study steps

study outcome effect per

$1000
$ ∆: source outcome ∆: source

Abott Kogan

Lavertu Peskowitz

(2020)

High school

graduation

0.0850 $417 (2012$): Table 8 Expend. P.P. Operations,

≤ 5yrs, Bandwidth +/− 10

0.0174: Table 8 Grad. Rate, ≤ 5yrs, Bandwidth

+/− 10, standardized (Table 2 Grad. Rate (4yr),

Passed); adjusted by factor of 0.8 (5 years to 4

year equivalent)

Abott Kogan

Lavertu Peskowitz

(2020)

Test scores 0.1160 $417 (2012$): Table 8 Expend. P.P. Operations,

≤ 5yrs, Bandwidth +/− 10

0.066: Table 8 Math/ELA (SDs), ≤ 5yrs, Band-

width +/ − 10; adjusted by factor of 0.8 (5 years

to 4 year equivalent)

Baron (2022) College en-

rollment

0.1870 $289.743 (2010$): Figure 1 (b) Total Operational

Expenditures, averaged across 1-10yrs Relative to

the Election (exact estimates provided by author)

0.195: Figure 2 Panel (d) Log(Postsecondary En-

rollment) Year 10 relative to election (exact esti-

mates provided by author), multiplied by baseline

rate (.39, Table 2), standardized; adjusted by fac-

tor of 0.4 (10 years to 4)

Baron (2022) Test scores -0.1580 $4400 (2010$): “the median per-pupil bond cam-

paign approved in Wisconsin is only approximately

$4,400 per pupil” (24), depreciated over 15 years

and averaged over first 6 years

-0.0567: Figure 6 panel (c) Average 10th Grade

Math Score, cubic Year 6 relative to election (exact

estimates provided by author), divided by student-

level SDs (43.2, footnote 28)

Baron (2022) Test scores 0.1790 $346 (2010$): Figure 1 (b) Total Operational Ex-

penditures, averaged across 1-4yrs Relative to the

Election (exact estimates provided by author)

3.084: Figure 2 Panel (c) Average 10th Grade

Math Score Year 4 relative to election (exact es-

timates provided by author), divided by student-

level SDs (43.2, footnote 28)

Brunner Hyman Ju

(2020)

Test scores 0.0530 $498 (2015$): Table 2 Current Expenditures,

State Aid, Expanded controls Yes

0.007: Table 7 All Districts Years postreform, mul-

tiply by 4 (years)

Candelaria Shores

(2019)

High school

graduation

0.0510 $795.02 (2010$): .1xbaseline (Table 2 Weighted

Mean Total revenues)

0.197: Table 5, Full log(Rev/Pupil), standardized

(Table 2, Graduation rates)

Carlson Lavertu

(2018)

Test scores 0.0900 $2048.79 (2014$): Table 8 Dynamic RD model SIG

eligibilty, average Year 1-4

0.221, 0.171: Table 5 Dynamic model SIG eligibil-

ity Year 4 of SIG, average Reading and Math

Cascio Gordon Re-

ber (2013)

High school

dropout

0.5550 $100 (2009$):“each additional $100 increase in an-

nual current expenditure per pupil. . . ” (pg. 152)

-3.46, 0.66: Table 7 ∆ White and Black high

school dropout (reverse sign), population weighted

(0.9/0.1) and translated to SD units based on base-

line (pg 147, population-weighted)

Cellini Ferreira

Rothstein (2010)

Test scores 0.1770 $6300 (2010$): “the average bond proposal in close

elections is about $6,300 per pupil” (249), depre-

ciated over 15 years and averaged over first 6

0.103, 0.160: Table VII, Academic achievement 6

yrs later Reading and Math, standardized (“the

year-six point estimates correspond to effects of

roughly 0.067 student-level standard deviations for

reading and 0.077 for mathematics” (252)
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Chaudhary (2009) Test scores 0.0180 $5348 (1991$): From Table 1 baseline .1765516: Table 3, 4th and 7th scaled scores

Clark (2003) Test scores 0.0150 $1094.28 (2001$): Table 3 Current expenditures

per pupil Post-reform (1=yes)

0.023: Table 6 Composite, Kentucky x post model

(3)

Conlin Thompson

(2017)

Test pro-

ficiency

rates

0.0060 $4000 (2013$): “Capital expenditure and capital

stock variables in Panels A and B are listed in

$1000s” (Table 3 note) x4 (years), depreciated 15

years averaged over first 3

0.081, 0.07: Table 3 Capital Exp PPt model (2)

Percent Proficient in Math and Reading, relative

to time t-3, standardized (Table 1 Percent Profi-

cient in Math and Reading)

Gigliotti Sorensen

(2018)

Test scores 0.0420 $1000 (2016$): “models. . .measure the effect of a

$1000 spending increase” (175)

0.0468, 0.042: Table 4 PPE Math and Reading

Goncalves (2015) Test pro-

ficiency

rates

-0.0020 $23740.4 (2010$): Table 1 Construction Cost Per

Pupil Total, depreciated over 36.875 (weighted be-

tween 15 and 50 based on “60-65% of projects are

new facilities” (6), averaged across first 6 years

1.266, -1.442: Table 4 6+ yr. Completion Ex-

posure Math and Reading, standardized (baseline

Avg. Proficiency Table 4)

Guryan (2001) Test scores 0.0280 $1000 (1991$): “median estimate. . . implies that

a one standard deviation increase in per-pupil

spending ($1,000). . . ” (21)

0.039, 0.032, -0.034, -0.026: Table V and Table VI

Math and Reading, subject-combined and stan-

dardized (assumed student-level SD of 100), then

precision-weighted across grades

Hong Zimmer

(2016)

Test pro-

ficiency

rates

0.0910 $8123 (2000$): Table 1 Avg. bond amount per

pupil, depreciated over 26.9 years (weighted be-

tween 15 and 50 based on Table 4 Passed a mea-

sure New building) averaged over 6 years

2.13, 1.44: Table 5 4th7th proficiency Relative

year 6, standardized based on Table 3 proficiency

baseline

Hyman (2017) College en-

rollment

0.0550 $1000 (2012$): “interpretation. . . is that $1,000
of additional spending during each of grades four

through seven. . . ” (269)

0.03: Table 4 model (4) Enroll in postsecondary

schooling, standardized (baseline Table 1 All dis-

tricts and cohorts Enrolls in postsecondary school)

Jackson Johnson

Persico (2016)

High school

graduation

0.0800 $480 (2000$): Table I All Per pupil spending (avg.,

ages 5-17) ($4,800) x0.1

0.07053: Table III Prob(High School Graduate)

model (7), standardized based on avg. national

baseline graduation rate of 0.77; adjusted by factor

of 0.33 (12 to 4 years)

Jackson Wigger

Xiong (2021)

College en-

rollment

0.0380 $1000 (2015$): “preferred model, a $1000 reduc-

tion in per-pupil spending. . . ” (14)

0.0201: Table A19 model (8) 4-Year Avg Per-Pupil

Spending (thousands), standardized based on Ta-

ble 1 College Enrollment Rate baseline

Jackson Wigger

Xiong (2021)

Test scores 0.0500 $1000 (2015$): “preferred model, a $1000 reduc-

tion in per-pupil spending. . . ” (14)

0.0529: Table A19 model (4) 4-Year Avg Per-Pupil

Spending (thousands)

Johnson (2015) High school

graduation

0.1440 $85 (2000$): “results indicate that a $100 increase

in per-pupil Title I funding. . . ” (66) times 0.85

passed through in real dollars seen by students

(Figure 9)

0.0225: Table 2 first column County Title I per-

pupil spending (00s), average ages five to seven-

teen, standardized based on avg. national baseline

graduation rate of 0.77; adjusted by factor of 0.33

(12 to 4 years)
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Kogan Lavertu

Peskowitz (2017)

Test scores 0.0190 -$303.096 (2010$): Table 3 Total average Election

year-3 years after, times 12000 (“District spending

per pupil is just under $12,000 annually” (384))

-0.14: Table 7 3 years after, to student-level SD

units based on footnote 34

Kreisman Stein-

berg (2019)

High school

graduation

0.0280 $1000 (2011$): specification, abstract 0.021: Table 8 Graduation, standardized based on

Table 1 Graduation rate baseline; adjusted by fac-

tor of 0.44 (9 to 4 years)

Kreisman Stein-

berg (2019)

Test scores 0.0780 $1000 (2011$): specification, abstract 0.097, 0.077: Table 5 Reading and Math

Lafortune Roth-

stein Schanzenbach

(2018)

Test scores 0.0160 $907 (2013$): Table 4 Mean Total exenditures 0.004: Table 8 Post event x years elapsed times 4

(years)

Lafortune Schon-

holzer (2022)

Test scores 0.0500 $87,701 (2013$): correspondence with author 0.031xyear - 0.016, 0.027xyear - 0.004: Table 3

2SLS New School + Newschool Trend, Math and

English Language Arts, 6 years

Lee Polachek

(2018)

High school

dropout

0.0640 $169.40 (2018$): Table 2 (percent change)

times baseline spend by authors’ calculations

($16939.79)

-0.1837: Table 3 9th-12th Grade Cubic, standard-

ized based on baseline dropout rate Table 1 Mean

Dropout Rate 9-12th Grade

Martorell Stange

McFarlin (2016)

Test scores 0.0250 $7800 (2010$): “average per-pupil size of capital

campaigns in Texas, the state we study in this

paper, is about $7800” (14), depreciated over 15

years averaged over first 6 years

0.016, 0.03: Table 5 Standardized Test Scores 6

years after bond passage Reading and Math

Miller (2018) High school

graduation

0.0660 $1371.9 (2013$): specification, 0.1 times baseline

spend $13,719.24 (pg. 30)

0.384: Table 4 10th Grade Cohort 1-4 years, stan-

dardized based on Table 1 Graduation Rate 4-year

lag

Miller (2018) Test scores 0.0520 $1371.9 (2013$): specification, 0.1 times baseline

spend $13,719.24 (30)

0.775, 0.879, 0.929, 0.477: Table 5 4th Grade Math

and Reading and 8th Grade Math and Reading,

subject-combined then precision-weighted across

grades

Neilson Zimmer-

man (2014)

Test scores 0.0310 $70000 (2005$): “about $70,000 in the New Haven

SCP” (25), depreciated over 50 years averaged over

first 6 years

0.153, 0.031: Table 6 > 5 Reading and Math, FE

Papke (2008) Test pro-

ficiency

rates

0.0820 $684.75 (2004$): 0.1 times baseline spend $6847.5
(Table 3 Average Expenditure per Pupil 1992-

2004)

36.77: Table 7 Fixed Effects-Instrumental Vari-

ables log(average eral per pupil expend), standard-

ized based on baseline Table 5 average 50th per-

centile first three years
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Rauscher (2020) Test scores 0.0070 $9600 (2014$): average capital outlays years 1-6

post election (Table 5), depreciated over 15 years

averaged across first 6 years

47.77, 12.36: Table 4 models (3) and(6) 6 Years af-

ter election Low-SES achievement and High-SES

achievement, to student-level standard deviation

units extrapolating from “These estimates amount

to 0.40 to 0.57 standard deviations. . . ” (119),

distributed across estimated students per school

(NCES)

Rauscher (2020) Test scores 0.0160 -$745, the average of the decrease in spending in

rural (-$940) and nonrual (-$550), ($2019)
.016: Tables 4 math and A11 ELA model(3), ru-

ral and nonrural, to student-level SD units from

author correspondance

Roy (2011) Test scores 0.3800 $1000 (2010$): specification, “estimates im-

ply. . . for every $1,000” (159)

0.057, 0.061: Table 8 Instrumental variables re-

gressions Lagged spending 1998-2001 Reading and

Math, standardized based on baseline SE (Foot-

note 35)

Weinstein Stiefel

Schwartz Chalico

(2009)

High school

graduation

0.1600 $391.7 (2003$): Table 6 Direct Expenditure Title

I model (2)

3.59: Table 8 Graduation Rate Title I model (2),

standardized based on avg. national baseline grad-

uation rate of 0.77

Weinstein Stiefel

Schwartz Chalico

(2009)

Test scores -0.0540 $284.3 (2003$): Table 5: Direct Expenditure Title

I model (2)

-0.011, -.031: Table 7 Title I Math and Reading

This describes the steps per overall study-outcome (and by spending type, relevant for Baron (2022)).
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A.2 Low-Income versus Non-Low-Income

Table A.2: Studies with LI and non-LI estimates

Study Outcome non-LI $ LI $ non-LI

effect

LI effect LI definition

Abott Kogan Lavertu

Peskowitz (2020)

Test

scores

279.99 609.19 0.2572 0.0460 “compare spending and educational outcomes between dis-

tricts that are above or below our sample median in terms of

poverty rates among 5–17-year-olds (according to the Ameri-

can Community Survey)” (9)

Abott Kogan Lavertu

Peskowitz (2020)

High

school

gradua-

tion

279.99 609.19 0.1396 0.0295 “compare spending and educational outcomes between dis-

tricts that are above or below our sample median in terms of

poverty rates among 5–17-year-olds (according to the Ameri-

can Community Survey)” (9)

Baron (2022) College

enroll-

ment

. 428.72 . 0.2566 “I classify a school district as having an initially-high share of

economically disadvantaged students if its share falls above the

median of the Wisconsin 2000-01 school district distribution

(the earliest year this variable is made publicly available).”

(18)

Baron (2022) Test

scores

329.54 392.81 -0.3509 -0.1419 “I classify a school district as having an initially-high share of

economically disadvantaged students if its share falls above the

median of the Wisconsin 2000-01 school district distribution

(the earliest year this variable is made publicly available).”

(18)

Baron (2022) Test

scores

. 532.74 . 0.1760 “I classify a school district as having an initially-high share of

economically disadvantaged students if its share falls above the

median of the Wisconsin 2000-01 school district distribution

(the earliest year this variable is made publicly available).”

(18)

Brunner Hyman Ju

(2020)

Test

scores

527.60 527.60 0.0303 0.0682 “We separate the effects of SFRs by within-state 1980 income

terciles because reforms were designed to differentially impact

state aid for low- and high-income districts, with the goal of

equalizing school funding” (478)

Candelaria Shores

(2019)

High

school

gradua-

tion

915.52 915.52 0.0188 0.1313 “state-specific poverty quartiles, defined using free lunch eli-

gibility status” (39)
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Goncalves (2015) Test pro-

ficiency

rates

. 1332.85 . 0.0027 Poorest 25% (Table 3)

Hyman (2017) College

enroll-

ment

1093.70 1093.70 0.0791 0.0055 “districts with below-median 1995 district-level fraction re-

ceiving free lunch” (276)

Jackson Johnson Per-

sico (2016)

High

school

gradua-

tion

710.59 686.24 0.0275 0.1140 “. . . a child is defined as low income if parental family income

falls below two times the poverty line for any year during

childhood” (165)

Johnson (2015) High

school

gradua-

tion

123.95 123.95 0.0556 0.3406

Kreisman Steinberg

(2019)

Test

scores

1116.33 1116.33 0.0264 0.0618 tercile of poverty (economically disadvantaged) (Table 6)

Kreisman Steinberg

(2019)

High

school

gradua-

tion

1116.33 1116.33 -0.0053 0.0571 tercile of poverty (economically disadvantaged) (Table 6)

Lafortune Rothstein

Schanzenbach (2018)

Test

scores

672.62 1484.28 -0.0059 0.0189 “bottom or top quintile, respectively, of the state district-level

income distribution” (Table 5)

Rauscher (2020) Test

scores

916.53 916.53 0.0039 0.0152 “The CDE defines low-SES students as those who are eligible

for free or reduced-price lunch or whose parents both have

less than a high school diploma. . . I refer to the distinction as

SES throughout the article” (114)

This represents all studies included in our meta-analyses which report separate effects for LI and non-LI populations (Except Baron (2022) operational

and Goncalves (2015), which report for LI but not non-LI). The studies not included in our analyses, but relevant for identifying whether effects of

spending are generally larger for LI populations include: Biasi (2019) on income mobility, Card & Payne (2002) on test score gaps, JJP (2015) on wages

and poverty, Johnson (2015) on wages and poverty. These papers all find either a decrease in outcome gaps between LI and non-LI groups, or specifically

more pronounced effects for LI individuals exposed to increased spending. This assumes the same dollar change for LI and non-LI districts in Hyman

(2017). Without additional information about within- and across-district demographic heterogeneity, we are unable to capture (potentially) different

spending changes for LI and non-LI students despite evidence in the paper which suggests money was distributed disproportionately to non-LI schools

within districts. Analogous to our inclusion criteria for studies, we include only low-income estimates from Baron (2022) and not non-low-income estimates

because (estimates provided by author) indicated no detectable spending change associated with operational referendum change for that population.
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A.3 Excluded paper details

We excluded papers unrelated to spending and student outcomes32 in the United States, and all

those that did not satisfy our inclusion criteria. Here, to shed light on how we applied the inclusion

criteria, we detail a few well-known papers that were considered but were excluded based in each

inclusion criteria.

No Identifiable Policy (Condition a)

Some studies are excluded based on this criterion. For example, Husted and Kenny (2000) that

states “Our preferred resource equalization measure. . . equals the change in resource inequality since

1972 relative to the predicted change (that is, the unexplained change in inequality). A fall in this

variable reflects either the adoption of state policies that have reduced districts’ ability to determine

how much to spend in their district or an otherwise unmeasured drop in spending inequality” (298).

No Testing of Exclusion Restriction (Condition b)

Note that the seminal Hoxby (2001) paper is primarily focused on the effect of reform type on

school spending. The additional analysis of the effect on student outcomes is not main focus of

the paper, and explicit tests for bias were not conducted. As such, this important paper in the

literature does not meet this component of our inclusion criteria for this particular analysis.

No Effect on Spending (Condition c)

This condition corresponds to a first stage F-statistic of 3.85 for the policy instrument on per-pupil

school spending. In a two-stage-least-squares (2SLS) framework, the typical threshold would be

a first stage F-statistic of 10. We impose a weaker restriction. Still, some well-known studies are

excluded based on this criterion. Specifically, van der Klaauw (2008) states that Title I “eligibility

does not necessarily lead to a statistically significant increase in average per pupil expenditures”

(750). Similarly, Matsudaira et al. (2012) do not find a robust association between the policy (Title I

eligibility) and per-pupil spending. Some studies examine the effects of policies that influence school

spending, but they do not report the effect of the policies on school spending in a way that allows

us to construct a first-stage F-statistic. These include Downes et al. (1998), Figlio (1997), Hoxby

(2001) and, more recently, Holden (2016) and Schlaffer and Burge (2020)33. Given its prominence,

we discuss Hoxby (2001) in more detail: Hoxby (2001) reports that some key policy parameters

(such as the inverted tax price) do predict differences in school spending but that others do not

(such as the income/sales tax rate in support of school spending, which has a t-statistic smaller

32As an additional exemplar, we excluded Deke (2003) as it reports on estimated effects of attending non-four-year
postsecondary institutions. On one margin, comparing no postsecondary education to non-four-year postsecondary,
this is a positive outcome. However, if people are sorting away from four-year postsecondary and into non-four-year
postsecondary attendance, this is not necessarily an improvement. Thus, we do not include this paper as it is not
comparable to other educational attainment outcomes reported in other papers.

33In particular, this paper only reports estimated effects of capital bonds–and does not specify the change in
spending associated with them. Thus, we are unable to associated estimated effects with a dollar change in spending.
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than 1 in predicting per-pupil spending). In a 2SLS model, all the policy variables (including the

weak predictors) are used and no first stage F-statistic is reported. As such, because a strong first

stage is not demonstrated, the 2SLS model predicting spending effects on dropout rates does not

satisfy our inclusion criteria. Having said this, two policy variables are individually significant at

the 5 percent level in most first stage regressions (inverted tax price and the flat grant/median

income). In reduced form models, both these variables individually indicate that increased school

spending reduces dropout rates. As Hoxby concludes, “while the estimated effects of equalization

on student achievement are generally weak, it does appear that the drop-out rate falls in districts

that are constrained to raise spending by the imposition of a per-pupil spending floor” (p. 1229).
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B Supplemental Figures & Tables

Figure A.3: Forest Plot: One Estimate per Paper

Baron, capital (2022)
Weinstein Stiefel Schwartz Chalico (2009)

Goncalves (2015)
Conlin Thompson (2017)

Rauscher (2020a)
Clark (2003)

Rauscher (2020b)
Lafortune Rothstein Schanzenbach (2018)

Chaudhary (2009)
Kogan Lavertu Peskowitz (2017)

Martorell Stange McFarlin (2016)
Guryan (2001)

Neilson Zimmerman (2014)
Gigliotti Sorensen (2018)

Jackson Wigger Xiong (2021)
Lafortune Schonholzer (2022)

Miller (2018)
Brunner Hyman Ju (2020)
Kreisman Steinberg (2019)

Papke (2008)
Carlson Lavertu (2018)

Hong Zimmer (2016)
Abott Kogan Lavertu Peskowitz (2020)

Cellini Ferreira Rothstein (2010)
Baron, operational (2022)

Roy (2011)

-.8 -.4 0 .4 .8
Effect per $1000 in PPE

Test Scores

Kreisman Steinberg (2019)

Jackson Wigger Xiong (2021)

Candelaria Shores (2019)

Hyman (2017)

Lee Polachek (2018)

Miller (2018)

Jackson Johnson Persico (2016)

Abott Kogan Lavertu Peskowitz (2020)

Johnson (2015)

Weinstein Stiefel Schwartz Chalico (2009)

Baron (2022)

Cascio Gordon Reber (2013)

-.2 .2 .6 1

Effect per $1000 in PPE

Educational Attainment

Note: The top panel shows papers that examine effects on test scores, and the bottom shows papers that
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the 95% Confidence Interval for each estimate. We show the 95% Confidence Interval for the Pooled Overall
effect in pink and the 95% Prediction Interval in blue.
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Figure A.4: Density of Positive Boostrap τ Estimates
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Figure A.5: Policy Impacts against Increase in Spending (multiple estimates per study)
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Figure A.6: Marginal Impacts by Baseline Spending Level (multiple estimates per study)
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Figure A.7: Marginal Impacts by Change in Spending Level
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Figure A.8: Non-Capital Test Score
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Figure A.9: Capital Test Score
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Figure A.10: Test Scores
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Figure A.11: Educational Attainment
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Table A.3: Meta-Analysis Estimates by Geographic Characteristics

(1) (2) (3) (4) (5)

Test Scores
by Multistate

Test Scores
by Region

Test Scores
by Urbanicity

Educational
Attainment
by Multistate

Educational
Attainment
by Region

Average Effect 0.0274∗∗∗ 0.0471∗∗∗ 0.0402∗∗∗ 0.0536∗∗∗ 0.0625∗∗∗

(0.00624) (0.00782) (0.00814) (0.0154) (0.00976)
Multistate 0.0187∗ 0.00985

(0.00972) (0.0190)
South -0.0207∗ -0.0249

(0.0120) (0.0760)
North -0.0115 0.0161

(0.0202) (0.0684)
Northeast -0.0262 0.00676

(0.0219) (0.0239)
West -0.0131

(0.0259)
Urban -0.0217

(0.0273)
Rural 0.000489

(0.0321)

N 40 40 24 25 25
τ 0.0198 0.0266 0.0290 0.0313 0.0398

Standard errors in parentheses are adjusted for clustering of related papers.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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C The Common Parameter Estimate

For each study, we compute an estimate of the effect of a $1000 per-pupil spending increase (in

2018 dollars), sustained for four years, on standardized outcomes for the full population affected by

the policy. We compute separate estimates for test scores and educational attainment outcomes.

Because studies do not all report impacts in this form, this often requires several steps. We detail

how we compute this empirical relationship (or parameter estimate) for through several steps, and

highlight any additional required assumptions in the following subsections. Importantly, we show

that none of these assumptions change our final conclusions in any appreciable way (see Sections

E and F).

Step 1: Choice of outcomes

We report effects on student achievement (measured by test scores or proficiency rates) and educa-

tional attainment (measured by dropout rates, high school graduation, or college (postsecondary)

enrollment). If multiple test score outcomes are reported (e.g., proficiency rates and raw scores)

we use the impacts on raw scores. This allows for standardized test score effects that are more

comparable across studies, and avoids comparing impacts across thresholds of differing difficulty

(i.e., where some areas have higher proficiency standards than others).34 For educational attain-

ment outcomes, we capture impacts on high-school completion measures and college enrollment.

For studies that report multiple of these measures, we take the highest level reported.35

Step 2: Computing Population Average Treatment Effects

For much of our analysis, we use one estimate per outcome per study. When studies report estimates

for multiple specifications, we capture estimates from the authors’ preferred specification. When

there is a reported overall estimate across all populations (e.g., high-income and low-income), all

subjects (e.g., Math and English), and all grade levels (e.g., 8th grade and 4th grade), we take

the overall estimate as reported in the study. When studies report effects by subject, grade level,

or population, we combine across estimates to generate an overall estimate and standard error for

analysis.36 When we combine test score effects across subjects for the same grade, we assume these

stem from the same population and use the simple average as our overall effect.37 38 We combine

34In one case, Kogan et al. (2017), multiple raw score effects were reported. We took the estimates for the preferred
outcome indicated by the authors.

35For example, if effects are reported for college enrollment and high school graduation, we take the college
enrollment effects. If effects are reported for high school graduation and high school dropout, we take the high-school
graduation effects. This particular decision rule of taking graduation over dropout outcomes is further justified
because: (a) dropout rates are notoriously difficult to measure (Tyler and Lofstrom (2009)) and thus a less reliable
measure of educational attainment, and (b) different entities often measure dropout rates is very different ways.

36Note that we estimate our main models across a range of assumed correlations, displayed visually in Figure A.18.
These have little effect on our main results.

37We follow Borenstein (2009) Chapter 24 to compute the standard error of the average effect, and assume a
correlation of 0.5 when combining subjects for the same grade.

38In the single paper (Baron (2022)) that presents impacts for two separate types of spending (non-capital and
capital) on one outcome (test scores), we use the simple average of the impacts of both spending types as our single
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test score effects across grade levels using a precision-weighted average.39 When we combine test

score or educational attainment effects across populations (i.e., high- and low-income), we use the

population-weighted average (i.e., put greater weight on the larger population) as our overall study

effect.40 This ensures that our overall estimate is as representative as feasible of what the effect

would be for the entire population, and facilitates comparison across studies. In Section E, We

show that all of our results are remarkably similar to alternative ways to combine estimates.

Step 3: Standardize the Effect on the Outcome

Studies report effects on test scores with different scales, and may report impacts on different

outcomes (e.g., district proficiency rates or high school graduation). To facilitate comparison across

studies, we convert each estimated effect into student-level standardized units if not already reported

in these units.41

Step 4: Equalize the Years of Exposure

Because education is a cumulative process, one would expect larger effects for students exposed to

school spending increases for a longer period of time. To account for differential treatment over

time, we standardize all effects to reflect (where possible) the effect of being exposed to a spending

increase for four years. Several studies report the dynamic effects of a school-spending policy (i.e.,

the effect over time). For test scores, when the dynamic effects are reported, we take the outcome

overall effect for the coin test analysis; we include both (non-capital and capital) distinct estimates of effects on test
score outcomes for our meta-analysis. To compute the standard error of the overall test score effect for Baron (2022)
we assume a correlation of zero.

39Precision weighting is a way to aggregate multiple estimates into a single estimate with the greatest statistical
precision. Instead of a simple average, this approach more heavily weights more precise estimates (i.e., placing more
weight on the estimates that are the most reliable). We follow Borenstein (2009) Chapter 23 to compute the standard
error of the precision-weighted average as the reciprocal of the sum of the weights (inverse variances). This calculation
of the standard error assumes a correlation of zero between the estimates.

40We follow Borenstein (2009) Chapter 24 to compute the standard error of the average effect, and assume a
correlation of zero when combining outcomes for different populations. We use the relative sample sizes reported
in the study to weight. For example, in Lafortune et al. (2018) we combine the estimates for the top and bottom
income quintiles (using the relative sample sizes) and assume a correlation of zero between these estimates. We make
an exception in one case: Cascio et al. (2013) report dropout rate estimates for Black and White students. For this
study we population-weight by an estimated share White = 0.9 and share Black = 0.1 rather than the 0.68/0.32
shares reported for the study sample.

41When effects are not reported in student-level standardized units, we divide the reported raw effect, ∆ẙ, by
the student-level standard deviation of the outcome to capture the estimated effect on the outcome in student-level
standard deviation units (i.e. σẙ). To perform this standardization, we gather information from each paper on the
standard deviation of the outcome of interest. This standard deviation is generally reported in summary statistics.
In two cases (Rauscher (2020a) and Kogan et al. (2017)), the standard deviation is reported at the school or district
level. In these two exceptional cases, we convert the school- or district-level standard deviation into a student-level
standard deviation by dividing the school or district-level standardized estimate impacts by the square root of the
school or district size. Our results are robust to excluding these two studies (see Table A.7). For binary outcomes such
as proficiency rates, graduation rates, or college-going rates, we use the fact that the standard deviation of a binary
variable is

√
p× (1− p). In the three studies that report on graduation rates for relatively old samples (Jackson

et al. (2016), Johnson (2015) and Weinstein et al. (2009)), we standardize estimated effects using graduation rates
that prevailed at that time (77%) from national aggregate statistics, rather than using the baseline reported for the
study sample. This choice makes studies more comparable by using the same standardization across studies of the
same outcome and time period.
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measured four years after the policy change.42 Some papers do not report dynamic effects, and

only report a single change in outcome after a policy-induced change in spending. In such cases,

we take the average reported effect.43 Because high school lasts four years, many papers report

the effect on educational attainment of four years of exposure, but not all do.44 45 We adjust the

captured effects to reflect four years of exposure by dividing the overall effect by the number of

years of exposure and then multiplying by four.

To justify this modelling decision, we show empirical evidence that the benefits to increased

spending increases approximately linearly with years of exposure. We focus on educational attain-

ment because educational attainment is measured at the same age for all respondents, but there is

variation in years of exposure across studies.

That is, some studies of educational attainment outcomes show the effects of four year of

exposure to a spending increase, while others present effects of 9 years and 12 years so we can test

if our assumption is reasonable. We plot the estimates (not adjusted for exposure) on educational

attainment in Figure A.12, with more precise studies represented with larger circles. The pattern

indicates larger overall impacts for estimates that relate to more years of exposure (per $1000 per-

pupil spending increase). We run a meta-regression on the years-unadjusted effects, and include the

years of exposure underlying each estimate as a covariate. The slope of year of exposure is 0.00x

(p−value = 0.03) and one cannot reject the average four-year effect (the shortest exposure reported)

is the same as four times the average impact of an additional year of exposure (p− value = 0.79).

In sum, the data indicate that the educational attainment impacts increase with years of exposure

and that the increase is approximately linear in years of exposure. This is both (a) a substantively

important result to inform policy, and (b) validates our modelling assumption.

Step 5: Equalize the Size of the Spending Change

Each included study isolates the effect of the policy on spending (and that of the policy on out-

comes) from other potential confounding factors and policies. We seek to determine the change in

outcomes associated with a particular change in per-pupil spending. To ensure comparability of

dollar amounts across time, we adjust reported dollars in each study into 2018 equivalent dollars

using the Consumer Price Index (CPI).46 Because we measure the impacts of exposure to four years

of a spending change, we relate this four-year outcome effect to the change in spending during these

same four years. For each study j we collect the average change in per-pupil spending (in 2018 CPI

42Note that some papers may refer to this as a year-three effect when they define the initial policy year as year
zero, while others may refer to this at the year four effect if the initial policy year is year 1.

43In many cases, the average exposure is less than four years so that (if at all) we may understate the magnitude
of any school spending effects for these studies.

44Papers that report effect for years of exposure other than 4 are: Abott et al. (2020), Jackson et al. (2016)/Johnson
and Jackson (2019), and Kreisman and Steinberg (2019).

45We capture the effect of referendum passage on college enrollment 10 years post-election in the case of Baron
(2022) to ensure comparability with other studies which report on the same outcome.

46We adjust based on the article’s reported $ year, and the last year of data if no $ year reported.
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Figure A.12: Educational Attainment by Years of Exposure
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adjusted dollars) over the four years preceding the observed outcome, ∆$j .
47 When the effect of

spending on outcomes is directly reported in a study, we record this estimate directly. See Section

C.1 for a detailed description of accounting for capital spending.

Step 6: The Standardized 4-Year $1000 Spending Effect

For each study, we obtain an estimate of the change in the standardized outcome per $1000 policy-

induced change in school spending (averaged over four years and in 2018 dollars). Our standardized

effect on outcome y from study j is θ̂j = (∆yj)/(∆$j). For 5 out of 31 study-outcomes, we compute

this ratio manually after standardizing the impact of the policy on both student outcomes and per-

pupil spending. For the 26 out of 31 study-outcomes that report marginal spending effects directly,

we take the reported marginal effect and adjust it (where needed) for exposure, CPI, and student-

level standardization. Importantly, this parameter estimate is comparable across studies.48 θ̂j can

be interpreted an Instrumental Variables (IV) estimate of the marginal impacts of school spending

47For a policy that leads to a permanent shift in spending, the total four-year change in spending is 4 times the
permanent shift and the average is the permanent shift. However, because spending can vary across years following
policy enactment, the duration of exposure and duration of the policy may not be the same. In these cases, we
use the average increase in spending during the four years preceding the outcome. For example, a policy may have
increased per-pupil spending by $100 in the first year, and increased linearly up to a $400 increase in the 4th year.
In this case, we would use the average increase in spending during the four years, which is $250. If a study does not
report spending change in the four years preceding the observed outcome, we capture the change in spending and the
contemporaneous measured outcome. This decision likely understates the true spending effect because these models
may not account for the benefit of spending in previous years.

48We also capture the associated standard error of the estimate. When studies report the effects on spending
and then on outcomes, our standardized effect θ̂j is a ratio of two estimates: the estimated change in the outcome
divided by the estimated change in spending. In these cases, where studies report the effect of a policy and not of a
specific dollar change, we account for this in computing the standard error. We follow Kendall et al. (1994) and use
a Taylor expansion approximation for the variance of a ratio. If µβ and µδ are estimates of β and δ, respectively, and

if Corr(β, δ) = 0, the standard deviation of β
δ
is approximately

√
µ2
β

µ2
δ
[
σ2
β

µ2
β
+

σ2
δ

σ2
δ
]. In Appendix Table A.8 we run our

main specifications across the range Corr(β, δ) = [−1, 1] and our overall results are largely identical.
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on outcomes using the exogenous policy-induced variation in school spending as the instrument.49

To illustrate the importance of computing the same parameter from each paper, consider the

following two papers: Lafortune et al. (2018) report that the “implied impact is between 0.12 and

0.24 standard deviations per $1,000 per pupil in annual spending” while Clark (2003) reports that

“the increased spending [...] had no discernable effect on students’ test scores”, reporting small,

positive, statistically insignificant impacts. At first blush, these two studies suggest very different

school spending impacts. However, when compared based on the same empirical relationship, the

papers are similar. Specifically, precision aside, θ̂j for Clark (2003) is 0.0148σ. By comparison, the

large positive impact in Lafortune et al. (2018) is based the change in the test-score gap between

high- and low-income groups (a relative achievement effect which is an important estimate for

distributional analysis) over ten years. Their estimates of absolute overall test score impacts over

4 years yields a θ̂j of 0.0164σ.50

C.1 Detailed Approach to Making Capital Comparable to Non-Capital

To account for the difference in timing between when capital spending occurs and when the inputs

purchased may affect outcomes, we use the annualized accounting value of the one-time increase in

spending as the spending change associated with estimates of student outcomes.

To assess the value of $1000 in capital spending as comparable to the same in non-capital

spending requires some reasonable assumptions. Specifically, a one-time (i.e., non-permanent)

$1000 increase in spending to hire an additional teacher for a single year may be reflected in

outcomes in that year. In contrast, such spending on a building should be reflected in improved

outcomes for the life of the building. In a simplistic case, where the asset does not depreciate (i.e.,

there is no wear and tear and the asset is equally valuable over its life), one would distribute the

total cost of the asset equally over the life of the asset. For example, if the life of a building is 50

years and the building costs $25,000,000, the one-time payment of $25,000,000 would be equally

distributed across the 50-year life span and be equivalent to spending $25,000,000/50=$500,000
per year. Note that, with no depreciation, for a typical school of 600 students, this seemingly large

one-time payment of $25M would be equivalent to $500,000/600= $833.33 per-pupil per year.

In a more realistic scenario with depreciation, during the first year of a building’s life, it is more

valuable than in its 50th year, due to wear and tear and obsolescence. In our example, the building’s

value in its first year would be greater than $500,000 and in its last year less than $500,000. To

account for this, we follow convention in accounting and apply the depreciated value of capital

49For the 16 study-outcomes that report population average IV estimates, we simply re-scale the reported effects
(and standard errors) to equalize exposure, and CPI-adjust policy spending changes. For 15 study-outcomes, our
overall effect combines estimates across subjects (e.g., math and reading) and/or populations (e.g., grade-levels, high
and low-income, or Black and White students). In all but 1 of these cases we compute the average of the sub-
population IV estimates – as opposed to computing the ratio of the average effects. We only compute the ratio of
the average effects when we combine estimates across grades levels and subjects. In these cases, because there are no
reported differences in spending changes by grade or subject, the ratio of the average effects and the average of the
individual IV ratios are identical.

50In their study, using relative versus absolute achievement gains matters. Specifically, they report test-score
declines for high-income areas which makes the relative gains larger but the absolute gains smaller.
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spending projects over the life of the asset. We assume annual depreciation of 4.7% and 16.5%

for building and non-building projects such that only ten percent of the initial asset value remains

after 50 and 15 years, respectively. That is, we assume that expenses that went primarily to new

building construction or sizable renovations last 50 years.51 Similarly, we assume that expenses

that went primarily to less durable assets (such as equipment or upgrading electrical wiring for

technology) last 15 years. For studies that report the proportion of capital spending that went

to new building construction, we depreciate the capital amount proportionally between 50 and 15

years.52 In Table A.11 we show that our main conclusions are robust to using lower and upper

bounds of years depreciated, as well as to assuming no depreciation.

For each study of capital spending, we compute the change in student outcomes for each $1000 in
average flow value of the capital spending in the years preceding the measured effect.53 We illustrate

this depreciation in Figure A.13, which shows the 15-year depreciation of a $7,800 per-pupil ($4.7
million per school) expenditure (as in Martorell et al. (2016)) and the 50-year depreciation of a

$70,000 per-pupil ($42 million per school) expenditure (as in Neilson and Zimmerman (2014)). This

transforms the extraordinarily large one-time expenditure over the projected life of the asset, which

falls in value over time. After computing the flow value of the capital outlay for each year after

initial payment, we can relate observed student outcomes associated with the average depreciated

value of the asset in the years preceding measured outcomes.54

Accounting for Construction Time

Because the typical capital project does not lead to contemporaneous changes in classroom ex-

periences, it is reasonable to expect any possible student improvements to take several years to

materialize after the capital outlay. Indeed, large capital projects that involve entirely new con-

struction or major upgrades to a new wing of a building can take multiple years to complete.

Moreover, capital projects often entail some temporary disruption to everyday operations during

the renovation/construction period, which may be deleterious to student outcomes. For these rea-

sons, we assign the first two years of a capital spending project to a “construction/adjustment

51In 2013-14, the average age of school buildings in since original construction was 44 years (NCES 2016). Studies
report on building age, including: Lafortune and Schönholzer (2022) (44.5 years), Martorell et al. (2016) (36 years),
and Neilson and Zimmerman (2014) (well over 50 years).

52For example, Martorell et al. (2016) report that most of the spending went to renovations, and Cellini et al.
(2010) provide an example of specific capital projects funded by a bond referenda, including to “improve student
safety conditions, upgrade electrical wiring for technology, install fire doors, replace outdated plumbing/sewer systems,
repair leaky rundown roofs/bathrooms, decaying walls, drainage systems, repair, construct, acquire, equip classrooms,
libraries, science labs, sites and facilities. . . ” (220). We describe capital paper coding in Table A.4.

53Depreciating the asset puts more value on the early years when test scores are measured and less on the years for
which outcomes are not measured (many studies do not evaluate what the effect is more than 6 years after the funds
are used). Because our parameter includes the spending change in the denominator, this reduces the reported school
spending effect relative to not depreciating the asset. Accordingly, our approach may be considered conservative.

54Because we use the size of the overall capital spending amount to compute the policy effect on spending, (∆$)
is not an estimate. As such, the standard error of the IV estimate is simply the standard error of the policy effect on
the outcome divided by the actual spending change. The one exception is Rauscher (2020a), who does not report an
average bond amount but provides an estimated policy effect on capital spending during the six years following bond
passage. In this case, we do adjust our IV estimate standard error to account for this estimated spending change.

23



period” and capture outcomes six years after the increase in capital spending.55

To assess whether this temporal decision is reasonable, Figure 1 presents the dynamic effects of

the nine studies estimating changes in capital spending on student test score outcomes. The left

panel plots the raw effects for each study, not the marginal per-$1000 effects, over time as relative

to a baseline year zero (t = 0) in which there should be no effect of the policy (the year of the

construction or the policy change).56 Consistent with an initial disruption, in several cases there is

an immediate dip in outcomes. Consistent with long-run benefits to capital spending, this initial

dip is followed by a gradual increase in outcomes in most studies. By about 5 or 6 years after a

capital spending increase, one observes improved outcomes in most cases. To more formally assess

the evolution of outcomes over time, we present the average dynamic effect in the right panel of

Figure 1. We plot the average (across the nine studies) effects 1 through 6 years after the capital

project or construction along with the 90 and 95 percent confidence intervals. This shows the same

per-study pattern of no change (or possibly a slight dip) in the first two years and then improving

outcomes after about 5 or 6 years. Indeed, one rejects that the effect of capital spending is zero

at the 5-percent level by year five. This pattern validates our assigning the first two years of these

studies to a “construction/disruption” period and using the six-year effect for capital spending

increases as the most comparable to non-capital spending four-year effects. Overall, the pattern

indicates that (a) capital spending does improve outcomes on average, and (b) these benefits take

between 4 and 6 years to materialize. We present more formal statistical tests in Section 5 that

quantify the extent to which capital spending may affect outcomes.

55Eight of nine papers report six-year estimates of the effect of capital spending changes on student outcomes.
When the six-year effect is not reported, we use the latest year reported. Conlin and Thompson (2017) reports only
3 years after capital spending, so we capture their year-three effect as our estimated effect. As a conceptual matter,
if capital spending does not improve student outcomes over both the year-four and the six-year effects, the impacts
of spending would be zero. This distinction matters only if one rejects the null hypothesis of zero spending impacts.

56For Lafortune and Schönholzer (2022), Neilson and Zimmerman (2014), and Goncalves (2015), year one (t = 1)
represents first year of occupancy at a new or renovated school. In the case of Conlin and Thompson (2017) year one
is the first year of program eligibility. For all other studies, year one (t = 1) represents the first year after a capital
bond was passed.
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Table A.4: Summary of capital depreciation decision

Study Depreciate over (years) Life of project description

Baron (2022) 15 “the median per-pupil bond campaign approved in Wisconsin

is only approximately $4,400 per pupil, and bond funds are

frequently used to repair, maintain, and modernize existing

structures, rather than to build new schools” (24)

Cellini Ferreira Rothstein (2010) 15 “Anecdotally, bonds are frequently used to build new perma-

nent classrooms that replace temporary buildings (e.g., Se-

bastian (2006)), although repair, maintenance, and modern-

ization are common uses as well’ (220) // Table 1 average

amount per pupil is of smaller magnitude than full-building

construction

Conlin Thompson (2017) 15 this paper doesn’t specify, and they translate effects into per-

$1000 but the OH program was for both new construction and

renovations

Goncalves (2015) 36.875 “I corresponded with an OSFC employee who reported that

about 60-65

Hong Zimmer (2016) 26.9 for the three years of data they have more detailed spending,

percent new building is about 34

Lafortune Schonholzer (2022) 50 “We restrict attention only to large new school projecst” (261)

Martorell Stange McFarlin (2016) 15 “typical capital campaigns deliver only modest facility im-

provements for the average student” (14) // “evidence is

stronger for the claim that capital campaigns increase expo-

sure to renovated schools” (20)

Neilson Zimmerman (2014) 50 “Of 42 school buildings, 12 had been rebuild completely by

2010, and 18 had been significantly renovated. . . school reno-

vations were generally substantial, incurring costs similar to

those of new construction” (20)

Rauscher (2020) 15 looks at CA bonds, which “can be used only for construction,

rehabilitation, equipping school facilities, or acquisition/lease

of real property for school facilities” (113)
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Figure A.13: Exemplar Capital Expenditure Depreciation
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D Modelling Assumptions

D.1 Normality of True Effects

Wang and Lee, 2020 suggests that one can test for the normality of true effects by implementing

standard tests of normality on suitably standardized effect sizes. That is, they point out that under

the null hypothesis that the θj ’s are normally distributed, it follows that θ̂Sj as defined below follows

a standard normal distribution.

θ̂Sj =
θ̂j − Θ̂(−j)

(τ̂2 + se2j + se2
θ̂(−j)

)(1/2)
(12)

In 12, all variables are defined as previously, and the subscript -j denoted estimates that exclude

estimate j. With the appropriately standardized estimates, they propose implementing standard

tests for normality – i.e., the Shapiro–Wilk test and quantile-quantile plots Dempster and Ryan

(1985). Implementing their standardization (using the R-code provided), the Shapiro–Wilk test on

the standardized estimates yield p-values of 0.78 and 0.99 for test scores and educational attainment,

respectively. That is, the tests fail to reject the null hypothesis that the effects are normally

distributed. We also present the precision-weighted and equal-weighted quantile-quantile plots

plots in figures A.14 and A.15. In both cases, there are no sizable deviations from normality.

Figure A.14: Test Scores Equal Weighted (L) and Weighted (R)
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Figure A.15: Educational Attainment Unweighted (L) and Weighted (R)
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Deconvolve Approaches

We also implement deconvolution approaches to test for meaningful deviation from normality in our

data. The basic deconvolution problem is that we do not observe the distribution of true effects

(θj), but only the distribution of estimates (θ̂j) - which is a noisy version of the distribution of

true effects g(θ). Because we make policy predictions about the true effect in other settings, the

distribution of true effects is of interest.

The deconvolution problem is to estimate g(θ) from the observed estimates θ̂j ’s under the

assumption that each estimate θ̂j is normally distributed around its true effect θj with precision

approximately equal to sej as in Equation (1). One kernel deconvolution approach is to model

density of the distribution flexibly with a Fourier Transform – following Delaigle et al., 2008 as

implemented by Wang and Wang (2011). Because using multiple correlated estimates per study

could artificially skew the distribution, we estimate the distribution of true effects for the one-per-

study sample. Using this approach, as with fitting data nonparametric models, one must choose

the tuning parameter. We set the tuning parameter (i.e., set the bandwidth to 0.008) to match

the estimated variance of the data – that is estimated using no distributional assumptions. The

resulting deconvolved disruptions of true effect for test scores and educational attainment are shown

in Figure 4.

One limitation of the approach above is that it does not provide confidence bounds for the

estimated densities. To shed light on whether any deviations from the normal distribution are

statistically significant, we implement Efron (2016) empirical Bayes (EB) deconvolution of the z-

scores that allows for confidence bounds (following Kline et al. (2022)). This approach models the

underlying distribution with an exponential family flexibly parameterized by an 8th-order spline.

For both outcomes, the deconvoluted distribution of z-scores is approximately normal (Figure A.16).
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for both outcomes, the confidence bounds are sufficiently wide that one would not reject the null

hypothesis that the distribution of effects follows a normal distribution – bolstering our modeling

decision.

Figure A.16: Deconvolve (With Confidence Interval)

0

.01

.02

.03

.04

up
pe

r/
lo

w
er

-5 0 5 10
Standardized Effect (theta)

-.01

0

.01

.02

.03

.04

up
pe

r/
lo

w
er

-5 0 5 10
Standardized Effect (theta)

29



Allowing for Other Functional Forms

Finally, to assuage concerns that our conclusions are driven by the assumption of normality, we

implement meta-analytic models that allow for outliers by modeling the distribution of effects using

a t-distribution Baker and Jackson (2008); Lee and Thompson (2008)), or a mixture of normal

distributions Beath (2014). These are implemented using the metaplus package in R. Importantly,

in addition to reporting estimates of Θ and τ , these models report likelihood ratio test relative to

the standard normal model. We report the meta-analytic results along with the tests of normality

from two models in Table A.5. One models allows for the distribution of effect to follow a t-

distribution, and the other allows the effect to be a mixture of normal models. These alternative

models yield similar results to the normal model and likelihood-ratio tests fail to reject the null of

normally distributed effect.

Table A.5: Mixture and Normal Results

Test Scores Educational Attainment

t-dist mixture t-dist mixture

θ 0.0333 0.0333 0.0557 0.0557
(0.0065) (0.0065) (0.0068) (0.0068)

τ 0.0218 0.0218 0.00837 0.00838
N 40 40 25 25
Pr(normal) >0.999 >0.999 >0.999 >0.999
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D.2 Dependence Between Effect and Precision

Figure A.17: Relationship between precision and effect size
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Note: This is a plot of each marginal effect (θ̂j) against its standard error (sej).
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Table A.6: Relationship between precision and effect size

Test Scores Educational Attainment

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Multiple
Multiple
F>20 One Per

One Per
Less Two

One Per
F>20 Multiple

Multiple
F>20 One Per

One Per
Less Two

One Per
F>20

Avg. Effect 0.0379∗∗ 0.0273 0.0486∗∗∗ 0.0353∗∗ 0.0524 0.104∗∗∗ 0.0579∗∗∗ 0.0716∗ 0.0581∗∗∗ 0.0592∗∗

(0.0183) (0.0343) (0.0171) (0.0129) (0.0321) (0.0187) (0.0130) (0.0335) (0.0116) (0.0110)
Centered-SE 0.0112 -0.0299 0.0421∗∗ 0.00576 0.0335 0.0839∗∗∗ 0.0112 0.100∗∗∗ 0.0489∗∗∗ 0.0105

(0.0178) (0.0292) (0.0183) (0.0157) (0.0338) (0.0195) (0.0350) (0.0291) (0.0132) (0.0446)

N 40 18 26 24 13 25 8 12 10 4

Standard errors in parentheses are adjusted for clustering of related papers.

Reported Centered-SE subtracts the median standard error from the estimate standard error.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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E Robustness to Modelling Assumptions and Sample Restrictions

E.1 Modelling Assumptions

To construct the same parameter for each study, we make several modelling assumptions. It is

therefore important to assess the sensitivity of our results to these choices, given that alternative

choices could have been made. In this section, we show our main estimates under different mod-

elling assumptions and sample restrictions - demonstrating the robustness of our estimates to these

assumptions and restrictions.

Figure A.18: Modelling Assumptions
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No prof. rate No capital depreciation No SD adjust assumption
No constructed IV 90% CI

Each bar represents a precision-weighted average estimate for each outcome type, comparing our main
specification to different modelling assumptions.

1. Strong First Stage: It is well understood that when the first stage relationship between

the treatment and the instrument (in this case the policy) is weak, the resulting estimates

may be biased and have unreliable standard errors (Bound et al. (1995) and Conley et al.

(2012)). We are relatively liberal in our inclusion of studies, using any study with a first

stage F-statistic of 3.85. Because we use precision weighting, and studies with weak first

stages are likely to have larger standard errors, our method of moment estimator should be

relatively robust to this problem. However, to assuage concerns, Table 4 presents our main

specifications for those studies with a first stage F-statistic greater than 20, as constructed

by the strength of the policy impact on the change in school spending. The results are very

similar to our main results (dark orange bars in Figure A.18).
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2. Coding Proficiency Rates: To make all test score estimates comparable, we converted

reported effects into standardized effects. This is common practice for tests that are given on

different scales, but less common for test score outcomes such as proficiency rates. For these

outcomes, we reported standardized proficiency rate changes by dividing the effect by the

student-level standard deviation of the proficiency rate
√
p(1− p), where p is the proficiency

rate. Improvements in student outcomes above or below the proficiency threshold may lead

to very small changes in the proficiency rate, even if they reflect large changes in standardized

raw scores. Or conversely, concentrated changes right around the proficiency threshold may

appear much larger as proficiency rate increases than they reflect changes in standardized

raw scores. As such, one may worry that our modelling of outcomes for these studies may

skew our results. To assess this, we estimate test score models that remove the 3 studies that

report effects on proficiency rates. We plot this effect and the confidence interval in the blue

bar on the left panel of Figure A.18. Dropping these studies has no appreciable effect on our

results – indicating that this modelling choice does not affect our conclusions in a meaningful

way.

3. Combining Effects: For our main analysis we seek to have one single effect per study-

outcome. As such, in many cases we combine impacts across subjects, grade levels, and

populations making different assumptions about the correlation between effects. To ensure

that these assumptions do not drive our conclusions, we re-estimate combined studies under

very different assumptions and show that they all yield very similar results. We summarize

these alternative approaches below.

Our main analysis assumes 0 correlation between independent effects (across grades or pop-

ulations), but these correlations could reasonably lie between 0 and 0.5. Our main analysis

assumes 0.5 correlation between dependent effects (math/reading), but the correlations be-

tween dependent effects could reasonably range from 0.25 to 0.75. To show the practical

importance of these assumptions on our estimates, we estimate our main models assuming

all four combinations of the upper and lower bound assumed correlations. We plot the re-

sulting estimates in grey, blue, green, and pink bars in Figure A.18.57 The stability of our

results indicates that our main estimates and conclusions are largely insensitive to reasonable

assumptions about the correlations between effect across subjects, grades, and populations.

4. Capital Depreciation: To directly compare the effects of operational and capital spending,

we depreciate capital expenditures following commonly accepted accounting approaches. To

assess the robustness to different assumptions about length of time capital projects depre-

ciated over, we re-run our main specifications with lower and upper bounds on years across

which capital investments are depreciated. At a lower bound, we depreciate buildings at 30

and non-buildings at 10 years. At an upper bound, we depreciate buildings at 50 and non-

buildings at 30 years. Additionally, one may also worry that the percent depreciation rate

57See full results in Table A.10
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is too high and that the value of the asset should be more evenly distributed over time. To

gauge the importance of this choice, we estimate models that assume the the value is uniform

over the life of the asset (or that there is no depreciation). We report the estimated effects in

Appendix Table A.11. Irrespective of the assumptions made, our estimates of the marginal

effect of capital spending are largely similar and cannot be distinguished from each other nor

from our preferred approach using formal statistical tests.

5. First and Second Stage Standard Errors Correlations: While many studies report

marginal spending effects that we can take directly, for 5 study-outcomes, we must form the

IV effects manually using the policy effects on spending and on outcomes.58 When computing

the standard error of this IV estimate, we assume zero correlation between the spending effect

and the outcome effect. To provide bounds on the importance of this assumption, we estimate

models that assume correlations of -1 and 1 (See Table A.8). The effects are largely unchanged

under either assumed upper and lower bound correlations – underscoring the robustness of

our meta-analytic average to this assumption.

6. Student Level Standard Deviations: For three studies (Kogan et al. (2017), Rauscher

(2020a), and Rauscher (2020b)), we convert school- or district-level standard deviations to

standardize the effect size at the student standard deviation level. Because this conversion

relies on some assumptions, to assuage any concerns that this drives our results, we drop these

two studies and re-estimate our model, resulting in very similar effects to including them (see

Figure A.18).

58These include Brunner et al. (2020), Johnson (2015), Kogan et al. (2017), Lafortune and Schönholzer (2022),
and Rauscher (2020a).
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E.2 Sensitivity and Robustness Analyses

Table A.7: Meta-Regression Estimates

No Clustering No SD Adjustment No Constructed IV

(1) (2) (3) (4) (5)
Test Scores Educational Attainment Test Scores Test Scores Educational Attainment

Average Effect 0.0303∗∗∗ 0.0545∗∗∗ 0.0375∗∗∗ 0.0369∗∗∗ 0.0579∗∗∗

(0.00524) (0.00790) (0.00651) (0.00680) (0.00871)

Observations 40 25 35 30 22
τ 0.0220 0.0248 0.0215 0.0209 0.0280
Average 90% PI [-0.007,0.068] [0.013,0.096] [0.001,0.074] [0.001,0.073] [0.011,0.105]

Standard errors in parentheses. Standard errors in models 3-5 are adjusted for clustering of related papers.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table A.8: Meta-Regression Estimates by Correlation Sensitivity

Corr = -1 Corr = 1

(1) (2) (3) (4)
Test Scores Educational Attainment Test Scores Educational Attainment

Average Effect 0.0322∗∗∗ 0.0564∗∗∗ 0.0306∗∗∗ 0.0596∗∗∗

(0.00577) (0.00845) (0.00528) (0.00922)

Observations 40 25 40 25
τ 0.0206 0.0253 0.0203 0.0296
Average 90% PI [-0.003,0.068] [0.014,0.099] [-0.004,0.065] [0.010,0.109]

Standard errors in parentheses are adjusted for clustering of related papers.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Table A.9: Meta-Regression Estimates, Title I Classified as Low-Income

Test Scores Educational Attainment

(1) (2)

Overall 0.0384∗∗∗ 0.0555∗∗∗

(0.00678) (0.00762)
Low-Income -0.0244 0.0322

(0.0188) (0.0241)
Non-Low-Income -0.0237∗∗ -0.0317

(0.0104) (0.0194)
Capital -0.00328

(0.0112)

LI - Non-LI -0.001 0.064**
(se) (0.019) (0.029)

Observations 40 23
Clusters 22 11
τ 0.0203 0.0225
Average 90% PI [0.008,0.069] [0.004,0.107]

Standard errors in parentheses are adjusted for clustering of related papers.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table A.10: Meta-Regression Estimates by Within and Across Correlations

(w/in pop. low (0.25)

across pop. low (0))

(w/in pop. low (0.25)

across pop. high (0.5))

(w/in pop. high (0.75)

across pop. low (0))

(w/in pop. high (0.75)

across pop. high (0.5))

(1) (2) (3) (4) (5) (6) (7) (8)
Test
Scores

Educational
Attainment

Test
Scores

Educational
Attainment

Test
Scores

Educational
Attainment

Test
Scores

Educational
Attainment

Average Effect 0.0320∗∗∗ 0.0573∗∗∗ 0.0315∗∗∗ 0.0572∗∗∗ 0.0312∗∗∗ 0.0573∗∗∗ 0.0306∗∗∗ 0.0572∗∗∗

(0.00577) (0.00860) (0.00573) (0.00857) (0.00547) (0.00860) (0.00541) (0.00857)

Observations 40 25 40 25 40 25 40 25
τ 0.0217 0.0267 0.0214 0.0265 0.0198 0.0267 0.0193 0.0265
Average 90% PI [-0.005,0.069] [0.012,0.102] [-0.005,0.068] [0.013,0.102] [-0.003,0.065] [0.012,0.102] [-0.003,0.064] [0.013,0.102]

Standard errors in parentheses are adjusted for clustering of related papers.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table A.11: Meta-Regression Estimates, by Depreciation Sensitivity

(1) (2) (3)
Low Depreciation High Depreciation No Depreciation

Average Effect 0.0384∗∗∗ 0.0555∗∗∗ 0.0347∗∗∗

(0.00678) (0.00762) (0.00711)
Capital -0.00328 0.00526

(0.0112) (0.0208)
EstEffLI -0.0244 0.0322

(0.0188) (0.0241)
EstEffnonLI -0.0237∗∗ -0.0317

(0.0104) (0.0194)

Capital 0.035*** 0.040**
(se) (0.009) (0.019)

Observations 40 23 40
τ 0.0241
Average 90% PI [0.008,0.069] [0.004,0.107] [-0.018,0.087]

Standard errors in parentheses are adjusted for clustering of related papers.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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F Assessing Bias in Individual Studies and Publication Bias

In a meta-analysis, one reports on the average of the reported study effects. However, this reported

average may not reflect the true average if (a) the individual studies are biased by confounding or

specification errors, and/or (b) the set of studies is somehow systematically selected. We address the

possibility of both sources of bias and fail to reject that our meta-analytic averages are unbiased.

F.1 Testing for Bias in Individual Studies

A common criticism of meta-analysis is that the end result is only credible if the studies included are

themselves credible. For this reason, we are careful to only include studies that employ methods that

may yield credibly causal effects. However, one may reasonably worry that even these individual

studies may still suffer from bias – potentially biasing our meta-analytic average. In this section,

we formalize a discussion of these biases and discuss when they may bias our meta-analytic average.

We also present empirical tests to assess the existence and extent of such possible biases. Finally,

we also propose a new meta-analytic approach that is robust to the existence of bias in individual

studies under certain reasonable conditions.59

A Framework For Assessing Confounding Bias

In our setting, there is a concern that the changes in outcomes observed reflect not just the effect

of school spending per se, but also other factors. This would occur if there were a violation of the

exclusion restriction. In this section, we lay out a framework within which to think about such

violations, clearly define when such violations may lead to a biased meta-analytic average, and

motivate an alternative estimation approach that can uncover average marginal spending effects

even when biases may influence the meta-analytic average. For ease of exposition, we abstract away

from treatment heterogeneity.

Consider a single outcome y. The change in the standardized outcome due to policy j is ∆yj ,

which is a function of the change in spending caused by the policy ∆$j , plus some noise υj , plus

possible bias bj . Where the average mean effect is Θ, the observed policy effect on outcome y is:

∆yj = (Θ×∆$j)︸ ︷︷ ︸
EffectofSpending

+ υj︸︷︷︸
Noise

+ bj︸︷︷︸
Bias

(13)

To compute a comparable statistic for each policy/paper, we use each study’s marginal effect:

θ̂j ≡
∆yj
∆$j

= Θ+
υj
∆$j

+
bj
∆$j

(14)

This is the true average marginal effect, plus the error to treatment ratio, plus the bias to treatment

59Note that there are some similarities between this framework and that laid out by Raudenbush et al., 2012, but
the issues addressed here are about bias, whereas Raudenbush et al., 2012 is primarily concerned with disambiguating
heterogeneity from differences in compliance rates for binary treatments.
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ratio. Where wyj is the weight for study j for outcome y, our meta-analytic average (Θ̂pw) is a

weighted average of each study’s reported standardized effect as below:

Θ̂pw =

∑
(
∆yj+υj
∆$j

)wyj∑
wyj

≡ Θ︸︷︷︸
True Average

+

∑
(

υj
∆$j

)wyj∑
wyj︸ ︷︷ ︸

Average of Noise Ratio

+

∑
(

bj
∆$j

)wyj∑
wyj︸ ︷︷ ︸

Average of Bias Ratio

(15)

The observed average is comprised of three pieces; the true effect, the average of the random

noise ratios (noise divided by the change in spending) across all the papers, and the average of

the bias ratio terms (bias divided by the change in spending) across all the papers. Equation

15 makes clear that the meta-analytic average is an unbiased estimate of the true average (i.e.,

E[Θ̂pw] = Θ) so long as (1) the average of the noise terms is equal to zero in expectation, and

(2) the average of the bias terms is equal to zero in expectation. The first condition implies that

while some studies’ impacts may be overstated due to measurement error or sampling variability,

others will be understated for the same reasons so that, on average, the errors cancel each other

out. So long as there are enough studies in the pooled sample and the random errors are unrelated

to the policy-induced spending change, this condition will be satisfied. The second condition is less

straightforward. It would trivially be satisfied if the individual studies are themselves unbiased.

However, even with bias in individual studies, the second condition would hold if some studies’

impacts are biased upward while others are biased downward so that the average bias is zero

and the bias is unrelated to the policy-induced spending change so that the average bias ratio is

approximately zero. We will present empirical evidence that this holds in our setting.

Tests For Bias

It is known that biases due to violations of the exclusion restriction tend to be more severe when the

first stage relationship is weak (Bound et al. (1995) and Conley et al. (2012)). In our context, one

can see this clearly because the individual bias-ratio for study j represented by bj/∆$j in equation

(14) is smaller for policies that generate larger changes in spending. It follows that if biases exist

in the included studies, the marginal spending effects should be systematically different (a) among

studies that have strong first stages, and (b) among studies based on policies that generate larger

versus smaller spending changes.

Strength of the First Stage: First, we show the main effects based on studies that have

first-stage F-statistics over 20 (Table 4 (columns 3-8)). The results are very similar to models that

use estimates with first-stage F-statistics above 3.85 (Table 3) and above 10 (Table 4 (columns 1

and 2)) – suggesting minimal bias in the individual studies.

Size of the First Stage: As a second test, we examine if the marginal policy impact varies

by the magnitude of the spending change induced by the policy. If there were biases (which one

expects to be larger in studies with weaker first stages), then the average marginal effects would

be larger for small spending changes than for larger spending changes. We test this by regressing

the marginal effect of the study against the magnitude of the spending change (see associated
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scatterplot in Figure A.7). Such a model yields a slope of 0.00002 (p-value of 0.259) for test scores

and a slope of -0.00002 (p-value = 0.2390) for educational attainment outcomes – indicating no

relationship between the marginal effect and the size of the spending change. While these tests

are not dispositive on their own, they suggest that the individual studies included (which were

specifically chosen because they are credibly causal) are by-and-large not appreciably biased on

average.

Only look at well-powered studies Some difference-in-difference-based studies may be bi-

ased due to a violation of the common trends assumption (Rambachan and Roth (2020)), studies

using regression discontinuity designs may have bias due to extrapolation away from the cutoff

point, and credible instrumental variables-based studies may have modest violations of the exclu-

sion restriction (Conley et al. (2012)). Because some of our included studies may be underpowered,

such violations may not have been detected. This motivates a simple test. If underpowered studies

are less able to detect bias, then in the presence of bias, well-powered studies will be less susceptible

to bias. We can assess the importance of this bias by seeing how robust our estimates are to the

exclusion of underpowered studies. That is, we estimate models only among studies that would

have detected (based on the standard error) our main meta-analytic averages at the 5% level. Using

this approach, we obtain effects similar to our main estimates (Table A.13).

Examine Voluntary versus involuntary policies There is no reason to expect that bias

of this sort would be correlated with the policy effect on spending. However, the most plausible

cause for concern regarding correlated bias is for policies that involve voluntary adoption. One may

expect that places that voluntarily implement policies that lead to larger spending increase also are

more likely to do other things that improve student outcomes. Such dynamics would generate bias

correlated with the spending increase and would inflate the marginal estimate. While we cannot

entirely rule out this form of bias, because we can distinguish studies that rely on variation induced

by the voluntary adoption of policies, we are able to test for its potential presence. Specifically,

we compare the average marginal effect for studies that rely on a new policy implementation (e.g.,

budget-increasing referenda) versus those that rely on variation conditional on policies being in

place (e.g., differential impacts of the recession or fluctuating student enrolment). We find that

studies based on a voluntary policy adoption are similar to other studies and (See Table A.13),

suggesting little bias of this form.

An Approach to Testing For and Removing Bias

The test above suggests that the meta-analytic average likely does not suffer from considerable

bias. However, taking the possibility of bias seriously, we present a novel approach to estimating

a meta-analytic average that is robust to the existence of the bias laid out in Equation (15) even

if the average of the bias is non-zero. The meta-analytic average in Equation (14) is an estimate

of the average marginal effect across all papers. However, the equation predicting the policy effect

on outcomes laid out in Equation (13), reveals that one could also estimate the average marginal

effect of differences in spending increases by estimating the relationship between the policy-induced
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changes in outcomes and the policy-induced changes in spending. Equation (13) indicates that a

regression of the change in outcomes for a given policy against the change in spending may yield

an estimate of the true average under certain conditions. Abstracting from precision-weighting, the

simple linear regression of (13) would yield:

Θdiff = Θ+
cov(υj ,∆$j)

var(∆$j)
+

cov(bj ,∆$j)

var(∆$j)
(16)

This difference-based approach (or bivariate regression approach) is a consistent estimate of the

true pooled average so long as the random errors are unrelated to the change in spending change

induced by a policy and the bias in each study is unrelated to the spending change induced by a

policy. Importantly, the difference-based approach does not require that the individual studies be

unbiased (which is needed to believe any individual study), nor does it require that the biases in

the individual studies average out to zero (which is needed to believe the meta-analytic average),

but relies on a weaker identifying assumption that the bias in individual studies is unrelated to the

spending changes induced by the policy under study.

Because the meta-analytic average may be biased by b while the difference-based estimate is

not, the extent to which the difference-based estimates differ from the meta-analytic averages may

indicate systematic bias in all studies. This motivates a formal test of bias, whether the meta-

analytic average differs from the difference-based estimate (i.e., that Θ̂diff = Θ̂pw). While this is

a useful test, it comes with an important caveat. The estimators may differ even when there is no

bias if any treatment heterogeneity is correlated with the size of the spending change.60 Because

bias is not the only reason the meta-analytic average and the difference-based estimates may differ,

one should take equality of effects as compelling evidence of no bias, but should not take differences

in these estimates as an indication of bias.

To assess this in our setting, in Figure A.5, we plot the raw, standardized overall effect of

each policy on student outcomes against the change in per pupil expenditures ($2018) caused by

the same policy.61 Each study is represented by a circle, and larger circles indicate more precise

outcome estimates. We also plot the fitted values from a precision-weighted regression relating the

60To give a concrete example, imagine that there were only two studies, of Policy A and Policy B. Policy A
increases per-pupil spending by $1000 and test scores by 0.05σ (leading to θ̂A = 0.05), while Policy B increases
per-pupil spending by $2000 and test scores by 0.04σ (leading to θ̂B = 0.02). Both policies have a within-study
positive relationship between school spending and test scores (so that θ̂pw > 0). However, the policy with the larger
spending increase (Policy B) had a smaller improvement on test scores, so that the difference-based relationship is
negative (i.e., θ̂diff < 0). While this may seem counter-intuitive, if there is some correlation between the size of the
policy and other contextual factors that determine policy efficacy, this could occur.

61There are 6 studies that report policy effects on student outcomes translated into $1000-increases, already having
made assumptions about the linear relationship between effect size and per-pupil spending change. For these studies,
if possible, we capture the reported average policy effect on per-pupil spending, and adjust the reported policy effect
on outcomes assuming linearity in the dollars-effect relationship (Gigliotti and Sorensen (2018), Guryan (2001), ?,
Kreisman and Steinberg (2019)). For the two papers that study Michigan’s Proposal A (Hyman (2017) and Roy
(2011)), there is no one clear policy effect on per-pupil spending, and we rely on effects-per-$1000 as reported. In
Figure 5, we plot and report regression results for all studies—adjusted for the four we can adjust. Our results do
not change appreciably when we exclude those studies which do not report one average policy effect on per-pupil
spending.
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two, along with the 95 percent confidence interval. There is a clear positive relationship between

the size of the spending increase caused by a policy and the increase in outcomes associated with

that policy. Using random effects meta-regression, the slope is 0.0379σ/$1000 for test scores and

0.0419σ/$1000 for educational attainment – both significant. Remarkably, for both outcomes, one

fails to reject that the averages of the within-study relationships are the same as the across-study

relationships at the 5 percent significance level.62 This suggests that, for both outcomes, the

documented positive causal relationships between school spending and outcomes are robust. For

both test scores and educational attainment, those policies that lead to larger spending increases

also lead to larger outcome improvements, on average, and the magnitudes of the differences across

policies are similar to those documented within studies. To ensure that our finding is robust, we

conduct the same tests excluding studies for which we were forced to make assumptions about the

size of the policy effect of spending (Table A.12), and our findings are robust to this.

A Suggestive Test of the Exclusion Restriction

The difference-based model allows for a direct and intuitive test of the exclusion restriction on

average. Specifically, the exclusion restriction is that the only mechanism through which the policies

examined affect outcomes is through school spending. If this condition holds, the regression line

relating the effect of the policy on outcomes to the effect of the policy on spending should go

through the origin. That is, the regression model should predict that a policy that has no effect

on school spending should have no effect on outcomes. One can see this mathematically by the

fact that the constant term in (13) reflects the average of the noise plus the average of the bias.

Given that the average of the noise is zero in expectation, this largely reflects the average of the

bias. This is a simple test that the constant in the regression is zero. For test scores, the constant

is -0.0026 with a p-value of 0.757, while for educational attainment, it is 0.0133 with a p-value of

0.165. The signs of the constants are different for the two outcomes, suggesting no systematic bias.

Taken together, the data suggest that the exclusion restriction is likely satisfied for both outcomes.

62We perform two-sample unpaired t-tests for the hypothesis of equality of the pooled meta-analytic average effect
and the slope relating the policy-induced spending changes to the policy related impacts on outcomes.
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Table A.12: Relationship between Size of Policy Effect on Spending and Student Outcomes

(1) (2) (3) (4) (5) (6)
Test Scores

All
Test Scores
w/o assumed

Ed Attain
All

Ed Attain
w/o assumed

IV Model
Test

IV Model
Ed Attain

Policy on Exp. ($1000s) 0.0379∗∗∗ 0.0295∗∗∗ 0.0419∗∗∗ 0.0572∗∗∗ 0.0379∗∗∗ 0.0419∗∗∗

(0.00620) (0.00758) (0.0110) (0.0115) (0.00620) (0.0110)

Constant -0.00587 -0.00226 0.0153 0.0138 -0.00587 0.0153
(0.00669) (0.00695) (0.00740) (0.0128) (0.00669) (0.00740)

N 40 33 25 18 40 25
Pr(slope = pooled avg.) 0.454 0.900 0.294 0.243
Overidentification p-val 0.107 0.774
F-Stat 23.39 17.21

Standard errors in parentheses are adjusted for clustering of related papers.
∗ p < .1, p < .05, ∗∗∗ p < .01

Note: The excluded instrument in the Instrumental Variables (IV) models (columns 5 and 6) are the

individual study indicators.

Table A.13: Meta-Regression Estimates by Power and Policy Categories

Power to Detect
Main Effect

By Policy
Categories

(1) (2) (3) (4)
Test
Score

Educational
Attainment

Test
Score

Educational
Attainment

Average Effect 0.0255∗∗∗ 0.0493∗∗∗ 0.0363∗∗∗ 0.0475∗∗∗

(0.00901) (0.00602) (0.00927) (0.0123)
Voluntary Policy -0.00805 0.0217

(0.0112) (0.0144)

Observations 12 10 40 25
τ 0.0223 0.0157 0.0193 0.0273
Average 90% PI [-0.014,0.065] [0.022,0.077] [-0.001,0.073] [-0.003,0.098]

Standard errors in parentheses are adjusted for clustering of related papers.

Voluntary Policy includes: Equalization, Referenda,

School Finance Reform, New Construction, and School Improvement Grants.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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F.2 Publication Biases

Our analysis may be biased if certain kinds of studies – especially those which find no effect of a policy or

intervention – are systematically not published. There are two kinds of publication biases that one may

worry about in our context. First, journals may be less likely to publish studies that are not statistically

significant. If so, assuming that there is an overall positive effect, those studies with larger positive impacts

(and therefore larger t-statistics) will be more likely to be published – such that the average among pub-

lished studies may overstate effects. Second, if researchers and journals are more likely to publish results

consistent with “preferred” results, precisely estimated impacts of all signs will be published (because they

are credible), but imprecise studies (where the results are are more ambiguous) of the non-preferred sign

will be disproportionately not published. This would lead to a meta-analytic average biased toward the

preferred result. We conduct several tests to assess the extent to which these are a concern in our setting.

We visually represent estimates from these approaches in Figure A.19, present regression results in Table

A.14, and summarize them here:

Figure A.19: Four Approaches to Publication Bias
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1. Studies that find null results may be less likely to be published than studies that find significant

effects (Franco et al. (2014), Christensen and Miguel (2018)). If one can observe studies that are not

published, a simple test for publication bias compares estimates from published studies to those that

are not published. In line with this, we compare average estimates of published and unpublished studies

and find no difference in impacts.63 In Table A.15, the coefficients on the indicator for “Unpublished”

63Of course, we cannot observe the unobservable – or those papers which are fully not shared in any form, published
or not.
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show no evidence that there is any difference in average effects reported in published versus unpublished

papers for both test scores and educational attainment outcomes.

2. Related to the first test, if there are biases against the publication of certain kinds of studies, one

might expect these biases to be most pronounced at the most selective journals (Brodeur et al. (2016)).

Informed by this notion, we compare the average impacts of studies published in the most elite journals

to studies published in other journals, and similarly find no differences across journal prestige (in

columns 2 and 4 of Table A.15, the formal tests of equality across publication type suggest no evidence

that publication status or type have any bearing on the estimates reported in studies of effects of school

spending.

3. Publication bias is thought to be most prevalent among imprecise studies (Andrews and Kasy (2019)),

and when there are biases against the publication of insignificant studies, one might observe an over-

representation of studies right at the significance threshold (in social sciences this would be the 5

percent level pertaining to a t-statistic of 1.96) and an under-representation of studies right below the

significance threshold (Brodeur et al. (2020)). To test for this in our data, we test for a discontinuity

in the cumulative density of t-statistics at 1.96. We show that there is no over-representation of

studies right at the significance threshold (t-statistic = 1.96) in Figure A.22. In Table A.16, we show

that there is no significant jump in density, by outcome type or combining across both test score and

educational attainment outcomes, at the significance threshold (t-stat > 1.96) – indeed, for test scores

there happens to be a decline at that point.

4. Even though we find limited evidence of selection of significant impacts, we implement a model that

accounts for any such selection (should it exist). To this aim, we show results for the Andrews

and Kasy (2019) selection adjustment using their web application in Figures A.23 and A.24. They

propose estimating the publication probabilities (based on the t-statistics) for studies, and using these

probabilities to produce bias-corrected estimators and confidence sets. More specifically, using the

relative publication probabilities, this approach re-weights the distribution of studies to account for

differences in publication probability (up-weighting studies that are least likely to be observed). For

both test scores and educational attainment, their model fails to reject the null of no selection at

the 1.96 t-statistic threshold. Reassuringly, their adjustment approach yields similar estimates to our

preferred model (columns 1 and 5 of Table A.14).

5. We test whether there is bias against imprecise, negative estimates. In a stylized world, with no

publication bias, a scatter plot of study impacts against the precision of each study should be roughly

symmetric around the grand mean (Borenstein (2009)). However, with publication bias, the scatter

plot around the grand mean will be asymmetric – suggesting that there are some “missing” studies.

In this stylized world with publication bias, while all or most precise studies will be published, there

may be an over-representation of published imprecise estimates in the “desired” direction and no

(or few) published imprecise estimates in the “undesirable” direction. We account for this kind of

publication bias in two ways: First, we impute “missing” (imprecise, negative) studies and re-estimate

our models. Second, we separately drop the least precise estimates (the least-precise half) and re-

estimate our models. Neither appreciably impacts our estimates.

We visualize the Duval and Tweedie (2000) “trim and fill” approach in Figure A.20, where black

circles indicate the individual study impacts. The distribution of effects is largely symmetrical around

the mean for very precise studies (at the top of the figures), but the distribution may be asymmetric

for studies with larger standard errors (the bottom of the plots). That is, while there is little visual
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evidence of publication bias among precisely estimated studies, there is some suggestive evidence that

imprecise positive studies with large impacts may be more likely to be published (or written) than

imprecise studies with negative or small impacts. To be clear, because (a) our inclusion criteria require

that the policy has meaningful impacts on school spending, and (b) one would expect there to be some

effect heterogeneity across states and policies, some asymmetry is likely even absent publication bias.

Even so, to be conservative, one can assume that any asymmetry is due to publication bias, and assess

the impacts of this asymmetry on the estimated pooled average. We follow this approach.

In the left panel of Figure A.20, to create symmetry, the “trim and fill” approach imputes four

“missing” studies of test score outcomes (green triangles) – both of which are negative and very

imprecise. These imputed studies are outside of the more precise range employed for our first test of

bias – validating that approach. The re-estimated pooled effect that includes these four additional

imputed studies is 0.032 (Table A.14 column 3) – very similar to our original estimate including

all observed estimates. Following this same approach for educational attainment, “trim and fill”

imputes five additional negative and relatively imprecise estimates. The re-estimated pooled effect

that includes the three additional imputed studies is 0.053 (Table A.14 column 7) – also similar to

our original estimate including all observed estimates. The fact that estimates do not change very

much with the imputed data also reflects the fact that the evidence of asymmetry is only among

very imprecise estimates, which receive lower weight in our precision-weighted pooled average. This

suggests that the impacts of any potential publication bias on our estimates are small.

When we estimate our main model on all studies using a drastic approach of dropping the majority of

the data (Stanley et al. (2010)), specifically those test score studies with an estimated standard error

of 0.023 or less (Table A.14 column 2) and educational attainment studies with estimated standard

errors of 0.021 or less (Table A.14 column 6), our results are similar to our main models. We indicate

these precision levels in the higher horizontal lines in the funnel plot in Figure A.20. Above this

cut-off, estimates are very tightly clustered around the pooled average.64 In this most precise sample

(where there is no evidence of asymmetry), the coefficient estimate for test scores is 0.03 Table A.14

column 3). This is very similar to our preferred estimate – indicating minimal bias. Following this

same approach for educational attainment, when we restrict our sample to studies with standard errors

below 0.021, the Egger’s tests indicate no asymmetry, and the regression estimate is 0.0533 (Table

A.14 column 6).65

Finally, we follow both Stanley and Doucouliagos (2014) and Ioannidis et al. (2017) and implement

the precision-effect estimate with standard error (PEESE) approach. This approach estimates the

relationship between the precision of the estimates and the estimates reported in each study. Under

the assumption that the most precise estimates will yield the true relationship, one can empirically

model the relationship between the precision of the estimates and the reported estimates and then infer

what the most precise estimate would be. In practice, this involves regressing the reported effect on

the square of its precision and taking the constant term as the bias-adjusted estimate. This approach

has been found to perform well in simulations. This approach yields a meta-regression estimate which

takes into account the influence of publication bias – based on estimate precision. In columns (4) and

(8) of Table A.14 we report meta-regression results. For test scores, the PEESE method estimates a

precision-weighted pooled average of 0.0263 and for educational attainment of 0.0512.

64The p-values on both the intercept and slope associated with the Egger’s test for this sample are both above 0.1.
65The Egger’s test is simply the p-value associated with the y-intercept being different from zero in a regression

on the study effects against its precision. When the funnel is asymmetric, this p-value will be small.
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While no single test can entirely rule out publication bias, taken as a whole, the empirical evidence is

consistent with minimal bias. That is, across several empirical tests and adjustments for potential publication

bias, we find little evidence that our estimates are appreciably impacted by publication bias. Indeed, in all

models that adjust for possible publication bias, the point estimates lie within the confidence interval for

our main estimate. Given the consistent pattern of results (i.e., 90 percent of study impacts are positive),

the fact that publication bias is unlikely to explain our positive overall association is not entirely surprising.

The robustness of our effect is also driven by the fact that we employ precision-weighed estimates that

down-weight those studies most susceptible to bias. We note that there is no perfect test for publication

biases, and we cannot entirely rule out the possibility of selection biases in ways these tests cannot detect.

Table A.14: Meta-Regressions w/ Approaches to Potential Biases

Test Scores Educational Attainment

(1) (2) (3) (4) (5) (6) (7) (8)

Avg. Effect 0.037∗∗∗ 0.0335∗∗∗ 0.032∗∗∗ 0.0263∗∗∗ 0.052∗∗∗ 0.0533∗∗∗ 0.053∗∗∗ 0.0512∗∗∗

(0.007) (0.00767) (0.00638) (0.00663) (0.008) (0.0076) (0.00663) (0.00704)

τ 0.022 0.0242 . 0.0195 0.010 0.0117 . 0.00713
Observations 26 13 29 26 12 6 17 12

Standard errors in parentheses. When possible, standard errors are adjusted for clustering of related papers.

Test Score: (1) Andrews & Kasy (2) SE < .023 (3) Meta Trim&Fill (4) PEESE

Educational Attainment: (5) Andrews & Kasy (6) SE < .021 (7) Meta Trim&Fill (8) PEESE
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Figure A.20: Funnel Plots
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Figure A.21: Funnel Plots, Multiple Estimates per Paper
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Table A.15: Meta-Regressions w/ Publication Type

(1) (2) (3) (4)
Test
Score

Test
Score

Educational
Attainment

Educational
Attainment

Unpublished -0.0109 -0.00687 0.0137 0.00448
(0.0123) (0.0175) (0.0203) (0.0308)

Top Field Journal 0.0100 -0.0349
(0.0170) (0.0269)

Field Journal 0.00611 0.00274
(0.0182) (0.0202)

Average Effect 0.0363∗∗∗ 0.0322∗∗ 0.0560∗∗∗ 0.0685∗∗∗

(0.00679) (0.0138) (0.00998) (0.0191)

N 40 40 25 25
τ 0.0226 0.0246 0.0294 0.0462
Top Field = Field = Unpublished = 0 (p-val) 0.687 0.352
Unpublished = 0 (p-val) 0.376 0.694 0.500 0.884

Standard errors in parentheses are adjusted for clustering of related papers.

Reference category High Impact ommitted.

High Impact: American Economic Journal, Quarterly Journal of Economics, Review of Economics and Statistics,

Sociology of Education.

Top Field: Journal of Econometrics, Journal of Public Economics.

Field: AERA Open, Economics of Education Review, Education Economics, Education Finance and Policy,

Educational Evaluation and Policy Analysis, Public Finance Review, Russell Sage Foundation Journal of the Social

Sciences, Journal of Public Administration Research and Theory, Journal of Urban Economics
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table A.16: Regressions to test for jump at 5% significance, Outcome: Cumulative T-stat density

(1) (2) (3) (4) (5) (6)
Test
Scores

(all tstats)

Test
Scores

1 < tstat < 3

Ed.
Attain

(all tstats)

Ed.
Attain

1 < tstat < 3

All
Outcomes
(all tstats)

All
Outcomes

1 < tstat < 3

Sig, 5%-level (ind) 0.0597 -0.0151 0.110∗ -0.00669 0.0763∗ -0.0148
(0.0553) (0.0260) (0.0572) (0.0724) (0.0411) (0.0272)

N 26 15 12 6 38 21

Standard errors in parentheses

All models include controls for the t-stat and the square and cube of the t-stat.

In column 5 pooled models (both outcome types) we include an indicator

for the outcome and interact t-stat and t-stat squared with the outcome.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Figure A.22: Histogram of all effects
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Figure A.23: Test Scores, One Estimate per Study
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Figure A.24: Non-Test Scores, One Estimate per Study
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G Bayesian Estimates

We implement a specific random effects meta-regression model. To assuage any concerns about our

choice of method, we also implement a full Bayesian model. The Bayesian model setup is identical

to that of the random effects model (that is, equations (1), (2), ((4)), and (4)). How these models

differ is how they estimate τ . By imposing some additional assumptions on the distribution of

τ , the Bayesian model obtains estimates of the model parameters that perform well even in small

samples.

Estimating τ Using a Bayesian Approach

It is helpful to clarify some notation. Let the set of true effects be θ = [θ1, θ2, θ3, .....θJ ]
′. The

observed estimates of these true effects are θ̂ = [θ̂1, θ̂2, θ̂3, .....θ̂J ]
′. The corresponding sampling

standard deviations are σ = [σ1, σ2, σ3, .....σJ ]
′ which is approximated by se = [se1, se2, se3, .....seJ ]

′.

Because the probability of observing the estimated effects (θ̂) is a function of true effects (θ), the

probability of which is determined by τ , the likelihood of observing estimates (θ̂) and sampling

standard deviations (se) can be computed for any given value of τ , Θ, and θ – that is, L(τ,Θ, θ).

Frequentist approaches, such as Maximum Likelihood, solve for the values of τ , Θ, and θ that

maximize this likelihood.

Bayes’ rule says that the joint posterior probability for the parameters (i.e., p(τ, θ,Θ|θ̂, se), is
proportional to the likelihood of the data given certain parameter values (L(τ,Θ, θ)) multiplied by

the prior probability of those parameters (π(τ,Θ, θ)). As such, using Bayes rule, given some prior

distribution, one can compute the posterior distribution of the true effects Θ, θ, and τ . Moments

(such as the mean) of the posterior distributions of τ ,Θ, and θ provide information about the

values of these parameters. Moreover, the spread of the posterior distributions sheds light on the

uncertainty around the values of these parameters.

The Bayesian model works as follows:

1. One chooses a probability density — i.e., prior distribution — that expresses beliefs about

the distribution of each parameter before seeing any data.

2. One defines a statistical model p(θ̂, se|τ, θ,Θ) that reflects our beliefs about the data given

the parameters.

3. After observing data θ̂ and se, the model updates our beliefs using Bayes rule and calculates

the joint posterior distribution for the parameters of interest p(τ, θ,Θ|θ̂, se).

4. The model takes random draws of τ , Θ, and θ from the posterior distributions and reports

moments (in our case, the mean) of the posterior distribution of the parameter estimates.

Note that p(θ,Θ, τ |θ̂, se) can be written as p(θ|Θ, τ, θ̂, se)p(Θ, τ |θ̂, se)p(τ, |θ̂, se). As such, the
model will draw the hyperparameters τ , then Θ, from their marginal posterior distributions

and then draw θ from its posterior distribution conditional on the drawn values of τ and Θ.
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Under this approach, we must define the prior distributions for τ and Θ. To this aim, we

assume that the true effect is a random draw from a normal distribution (justified by the central

limit theorem), and that the heterogeneity parameter τ2 follows an inverse Gamma distribution as

in (14) and (15).

Θ ∼ N(.) (17)

τ2 ∼ InvGamma(.) (18)

The inverse Gamma distribution is commonly used to model variance parameters and avoids the

non-negative estimates one can obtain from method of moments approaches. Reassuringly, We

obtain similar results if we assume a χ2 distribution.

We estimate this model with starting values such that τ2 ∼ InvGamma(0.0001, 0.0001) and

that Θ ∼ N(0, 100). The model estimates are reported in Table A.17 and A.18. The model

converges well and provides very similar results across simulations and starting values – suggesting

that the results are sensible and largely driven by the data (as opposed to the priors). Consistent

with this, the resulting Θ and τ (and the uncertainty in these estimates) from these models are

similar to those using frequentist methods.
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Table A.17: Bayes Estimates,

One Estimate Per Study Multiple Estimates Per Study
Test Scores Educational Attainment Test Scores Educational Attainment

RE Bayes RE Bayes RE Bayes RE Bayes

θ 0.032 0.034 0.057 0.059 0.032 0.031 0.057 0.057
(0.006) (0.007) (0.007) (0.011) (0.006) (0.007) (0.009) (0.010)

τ 0.022 0.025 0.017 0.022 0.021 0.026 0.027 0.022
τ 95% CI (0.014, 0.039) (0.007, 0.046) (0.015, 0.042) (0.007, 0.048)

N 26 26 12 12 40 40 25 25

Note: We report random effects estimates in the columns labeled RE. Those with the header labeled Bayes are from the full

Bayesian model. τ 95% CI represents the reported 95% Credibility Interval obtained from the Bayesian model.
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Table A.18: Bayes Estimates, , by First Stage Strength

F-stat > 10 F-stat > 20
Test Scores Educational Attainment Test Scores Educational Attainment

RE Bayes RE Bayes RE Bayes RE Bayes

θ 0.033 0.035 0.054 0.056 0.033 0.039 0.055 0.060
(0.006) (0.008) (0.009) (0.017) (0.008) (0.009) (0.010) (0.047)

τ 0.022 0.024 0.028 0.032 0.020 0.027 0.019 0.078
N 30 30 13 13 18 18 8 8

Note: We report random effects estimates in the columns labeled RE. Those with the

header labeled Bayes are from the full Bayesian model.
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