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A. PROOF OF LEMMA I

We first introduce some notation. Let T}, = n1,Wip 4 nopWop, and Cp = nqp(1—
Wip)+ngp(1—Wop) be the number of treated and untreated observations in pair p.
Let T = 25:1 Ty and C = 25:1 C)p be the total number of treated and untreated
observations. Let SET, = Z;zl S Wypeigp and SEU, = Eg L (1 —
Wp)€igp respectively be the sum of the residuals €4, for the treated and untreated
observations in pair p.

7 is the well-known difference-in-means estimator:

P 2 ”fm W P 2 "tm 1 W )
T = ng gp zgp gp

Remember that 7, = Z _ [ ap Zn” S (] — Wy,) S ﬁ} is the differ-

=1 ngp =1 ngp
ence between the average outcome of treated and untreated observations in pair
p. It follows from, e.g., Equation (3.3.7) in Angrist and Pischke (2008) and a few
lines of algebra that
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Tfe = E WpTps where w, =

PoiNT 1
Proof of Vpair (7) = Vpair (Fre)
It follows from Equations (1) and (2) that
P
G+ T Wy + €igp = T Wap + 3 Apigp + tigy-
p=1

Rearranging and using the fact that under Assumption 2 7 = 7., one obtains
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that for every p:
(A1) €igp = Tp — O + Uigp.
Then,

P
~ 1
Vpair(7) = 75 > (SET, — SEU,)?
p=1

- % Zp: zg: Zi:(Qng - 1)eigp] 2

== Z Z >2(EWap = 1)y =+ )

-4 3 Z S R S ) D LI 1)] 2
(A2) = % Zp: (Zg: Z ngwgp> 2 :

The first equality follows from Point 1 of Lemma C.1 and Assumption 2. The
third equality follows from Equation (Al). The fifth follows from the follow-
ing two facts. First, 3 >, (2Wgp — Duigy = 237, 37 Wopttigp — D25 >, Uigp =
2342 Wopttigp, since 35,37 uigp = 0 by definition of ujgp. Second, (9 —

a) 32y 2i(2Wep —1) = (Fp — @) [Zg i Wop =225 2(1 = ng)} =W-a)l-
Cp) = 0, where the last equality comes from the fact that ni, = ng, by Assump-
tion 2.

Similarly,

. 4 L 2
(A3)  Voanr(re) = 7 Z SET; . = = Z (Z Z W, puzgp> ,
=1

where the first equality follows from Equation (H22) in the proof of Lemma
C.1 and Assumption 2. Combining Equations (A2) and (A3) yields V,q(T) =
Vpair (Tre)-

~

Proof of E [% p(m(?)] =V(7) + ﬁ 2521(7}) —7)?
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Under Assumption 2, T'= C = n/2, so
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(Ad)

The third equality comes from the definition of SET, and SEU,. The fifth

equality follows from the Equation (1).

The sixth equality follows from ni, =

ngp = np/2, which is a consequence of Assumption 2. The eighth equality comes

from the fact that »_ (2Wgp — 1

) = 0, which follows from Point 1 of Assumption

1. The ninth equality follows from Point 1 of Assumption 1. The tenth equality
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follows from Eg(2W9P —1)3° Yigp = Ey Wap 22 Yigp — Zg(l = Wyp) - Yigp =
npTp/2. The eleventh equality follows from Assumption 2.
Now, consider Equation (A4). Adding and subtracting 7 and 7, = E[7,].

P
Tyair() = 33 3 (o = 75) = F = 7) + (1 = 7))
=1
1 - ‘ ( ‘
=532 =)+ F =1+ (5 —1)° =27 — ) (F )
p=1

+2(7p — )1 —7) = 2(T = 7)(7p — 7)] -

Taking the expected value, and given that E[7] = 7 and E[7,] = 7,

p=1
P
— (1= 2) VD + 2 V) + 3 X )
p=1 p=1
.,
_ <1 _ l) V@) + =5 S (7 - 7)?
p=1

The second equality follows from the fact that by Point 3 of Assumption 1 and
Assumption 2, Cov(7,,7) = Cov <?p,zp, }%?p/) = +V(7,). The third equality
comes from Equation (3). This proves the result.

QED.

PoinT 2
The result directly follows from Points 3 and 4 of Lemma C.1 and the fact that

nip = ngp = np/2 under Assumption 2.
QED.

PoiNT 3



ALet Yy E/\Zz Yigp/ngp. Yp(1) = Zg WopY gp, Yp(0) = Zg(l — W)Y gp, and
Y(d) =32,Yy(d)/P, for d € {0,1}.

(A5) E[Y,(1)] =E [Z Woplgp(1 ] qup =7p(1
g
The second equality follows from Point 2 of Assumption 1. Similarly,
(AG) E[Y,(0)] = E[7,(0)]
(A7) E[Y (d)] = 3(d), for d € {0,1}.

- . _ 8
Vanit(7) = Vpair(7) = —5 > SET,SEU,
p

- % Z (Z Wop Z(Z/igp(l) > (Z Z (4igp(0) — ?(0))>
:%Z%<ZW9PZ%Q}D )(

(A8)

— % Zp: Y,(1)Y,(0) — %?(1)?(0)

The first equality follows from Points 1 and 2 of Lemma C.1 and Assumption
2. The second equality follows from the definitions of SET),, SEU,. and €;qp.
The third equality follows from Point 1 of Assumption 1, and Assumption 2.
The fourth equality follows from Assumption 2 and some algebra. Taking the
expectation of (A8),

E [Vunit(7) = Vpair (7)]
= 25 3 (Cov(B 1), 5,0)) + 723 S, (1) — H)F,0) — 70) — 5Cov(T (1), T (0))
p p
2 S S 2 _ _ _ 2 1 S 1 S
= =5 > (CovTp(1), 5,(00)) + 75 D 5,(1) = ) F,(0) = 5(0) = Cov [ > T,(1), 5 > p<0>>
p p p p
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The first equahty follows from adding and subtracting 2 ]E[ (1 )]E[Y( )] and

B ZPE[Y( ) E[Y, »(0)], and from Equations (A5), (A6) and (AT7). The third
equality follows from Point 3 of Assumption 1. Therefore,

(A9)
g 2 [Tunie() = Taar ()] = 1 32 (Cov(To (1. 50) + s S 50) = 70T, (1) = 5.
p P

Finally,

~

Cov (T,(1). 5,(0)) = E[T,(1)%,(0)] - E[T,(1)] E[7,(0)]

— (%glp(l)y%(ﬂ) + %yQp(l)ylp(0)> - (%Zygp > ( Zygp

= 1T (7(0) + 1 (171,(0) — 71, (1F1,0) — 3%(1)%(0)
= 1 1p(1) = T2y (1)) (2 0) — T1,(0)
(A10) = 2 Fanl0) ~ 7,(0)) (1) — T (1)
g

The second equality follows from Points 1 and 2 of Assumption 1, and Equations
(A5) and (A6). The third, fourth, and fifth equalities follow after some algebra.
The result follows plugging Equation (A10) into (A9).

QED.

B. LARGE SAMPLE RESULTS FOR THE PAIR- AND UNIT-CLUSTERED VARIANCE
ESTIMATORS

In this section, we present the large sample distributions of the ¢-tests attached
to the four variance estimators we considered in Section II. Let

o2 . = lim PV()
i = P PV 1 oy - 7)2’
Beonp =35 3 ,(0) = THON@,1) = TD) = 55 3 5 3 1(0) = 7,(0)) (7 (1) -
p p 9
and o> PV

lim ,
unit = p 2 o PV(T) 4+ % ZP(TP —7)2 420000, p
where Assumption 3 below ensures the limits in the previous display exist.

ASSUMPTION 3:



1) For every d, g and p, there is a constant M such that \ygp(d)\ <M < +o0.

2) When P — +o0, I%Zp Tp, %Z (Tp )2, and Acovp converge towards

finite limits, and PV(T) and PV(T) + & Z Tp — T)% + 20000 p converge
towards strictly positive finite limits.

3) As P — +o0, 3.7

p=1 E[ITp — 7|2/ SETE — 0 for some e > 0, where S =
P2V(7).

Point 1 of Assumption 3 guarantees that we can apply the strong law of large

numbers (SLLN) in Lemma 1 in Liu (1988) to the sequence (?g);o‘f Point 2

ensures that PV (7) and PVumt( 7) do not converge towards 0. Point 3 guarantees

that we can apply the Lyapunov central limit theorem to (Tp);’zl.

THEOREM B.1: (t-stats’ asymptotic behavior) Under Assumptions 1, 2 and 3,

1) (T—71)/ pazr( ) = (Tfe_T)/ pazr(Tfe) - N (0, pazr) pal'r <1, and
if T, =T for every p, o :nm?r =1.

2) (?fe - T)/ i\,wu't(a:fe) _> N(O 202 )

pair

3) (?_ T)/ umt( ) —> N( umt)
4) o2 . < U;fcm if and only if Acyy p converges towards a positive limit.

PROOF:

See Online Appendix H.

Point 3 is related to Theorem 3.1 in Bai, Romano and Shaikh (2021), who show
that when ng, = 1, the t-test in Point 3 under-rejects. The asymptotic variance
we obtain is different from theirs, because our results are derived under different
assumptions. For instance, we assume a fixed population, while Bai, Romano
and Shaikh (2021) assume that the experimental units are an i.i.d. sample drawn
from an infinite superpopulation, and that asymptotically the expectation of the
potential outcomes of two units in the same pair become equal.

C. CLUSTERED VARIANCE ESTIMATORS

LEMMA C.1 (Clustered variance estimators for 7 and 7¢.):

, : 2
1) The pair-clustered variance estimator (PCVE) of T is Vp(m Z 1 (bET — %) )
~ 2 2
2) The unit-clustered variance estimator (UCVE) of T is Vynit(T) = Z _1 (SET + Sggp ) .

3) The PCVE of e is Vpair (Fre) = Sob_y w2 (7 — 7re)” -
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~ . 2
4) The UCVE of 7. is Vanit(Fre) = Sb_, w2 (7 — 7re)? < ()

PROOF:
See Online Appendix H.

D. VARIANCE ESTIMATORS THAT RELY ON PAIRS OF PAIRS

We also study two other estimators of V(7). Those estimators have been pro-
posed in the one-observation-per-unit special case, but it is straightforward to
extend them to the case where all units have the same number of observations,
as stated in Assumption 2.3

The first alternative estimator we consider is a slightly modified version of
the pairs-of-pairs (POP) variance estimator (POPVE) proposed by Abadie and
Imbens (2008). We only define it when the number of pairs P is even, but in our
application in Subsection D.D4 below we propose a simple method to extend it to
cases where the number of pairs is odd. Let x,, denote the value of a predictor
of the outcome in pair p’s unit g. Pairs are ordered according to their value
of %ﬂ, the two pairs with the lowest value are matched together, the next
two pairs are matched together, and so on and so forth. Let R = g. For any
r € {1,..., R} and for any p € {1,2}, let 7, denote the treatment effect estimator
in pair p of POP r. Then, the POPVE is defined as

~

R
~ 1 ~ ~
Vpop(T) = P2 Z(Tlr - 7'2r)2-
r=1

T4, the variable used to match pairs into POPs, could be the average value of the
outcome at baseline in pair p’s unit g. Or it could be the covariate used to form
the pairs, when only one covariate is used. In our application in subsection D.D4,
we use the baseline outcome to match pairs into POPs, because the covariates
used to match units into pairs are unavailable in most of the data sets of the
papers we revisit. Based on Lemma D.1, we will argue below that the baseline
outcome should often be a good choice to match pairs into POPs. The variable
one uses to form POPs should be pre-specified and not a function of the treatment
assignment. Otherwise, researchers could try to find the variable minimizing the
POPVE, which would lead to incorrect inference.

There are two differences between the POPVE and the variance estimator pro-
posed in Equation (3) in Abadie and Imbens (2008). First, we match pairs with
respect to a single covariate, while Abadie and Imbens (2008) consider matching
with respect to a potentially multidimensional vector of covariates. This dif-
ference is not of essence: we could easily allow pairs to be matched on several
covariates. We focus on the unidimensional case as that is the one we use in our

13Extending those variance estimators when Assumption 2 fails is left for future work.
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application, where the matching is done based on the baseline outcome. Second,
the estimator in Abadie and Imbens (2008) matches pairs with replacement, while
Vyop(T) matches pairs without replacement. If after ordering pairs according to

their value of %, pair 2 is closer to pair 3 than pair 4, pair 2 is matched

to pairs 1 and 3 in Abadie and Imbens (2008), while @pop(?) matches pair 1 to
pair 2 and pair 3 to pair 4. Matching without replacement makes the properties
of Vo, (7T) easier to analyze.

The second alternative variance estimator we consider is that proposed by Bai,
Romano and Shaikh (2021) in their Equation (20) (BRSVE). Again, we define
this estimator when the number of pairs P is even. With our notation, their

estimator is
P R ~
9 2 o 72
%7: Z Tp — E Z} TirTor + F .
: r—

Bai, Romano and Shaikh (2021) propose another variance estimator in their Equa-
tion (28). That estimator is less amenable to simple comparisons with the UCVE;,
PCVE, and POPVE, so we do not analyze its properties. However, we compute
it in our applications, and find that it is typically similar to the POPVE and
BRSVE.

D1. Finite-sample results

Let 7, = %(ﬁr + T9,) denote the average treatment effect in POP r.

LEMMA D.1: If Assumptions 1 and 2 hold and P is even,
1) B [Vyop ()] = V) + 2 i (r1p — 7).

2) Vbrs(?) = % pair(?) + % pop(?).

PROOF:

See Online Appendix H.

Point 1 of Lemma D.1 shows that the POPVE is upward biased in general, and
unbiased if the treatment effect is constant within POP. The less treatment effect
heterogeneity within POP, the less upward biased the POPVE. An important
practical consequence of Point 1 is that the variable used to form POPs should
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be a good predictor of pairs’ treatment effect. The baseline value of the outcome
may often be a good predictor of pairs’ treatment effect. For instance, treatments
sometimes produce a stronger effect on units with the lowest baseline outcome,
thus leading to a catch-up mechanism (see for instance Glewwe, Park and Zhao,
2016a).

Point 1 of Lemma D.1 is related to Theorem 1 in Abadie and Imbens (2008),
though there are a few differences. Abadie and Imbens (2008) assume that the ex-
perimental units are drawn from a super population, and show that once properly
normalized, their estimator is consistent for the normalized conditional variance
of 7.1 The fact that the POPVE is upward biased in Lemma D.1 and consis-
tent in their Theorem 1 is because we do not assume that the experimental units
are an i.i.d. sample from a super population. The intuition is the following. In
Abadie and Imbens (2008), when the number of units grows, the covariates X;
on which pairing is based become equal to the same value x for units in the same
POP: with an infinity of units, each unit can be matched to another unit with the
same X;, and each pair can be matched to another pair with the same X;. Then,
asymptotically those units are an i.i.d. sample drawn from the super-population
conditional on X; = x, and they all have the same expectation of their treatment
effect. Treatment effect heterogeneity within POPs, the source of the POPVE’s
upward bias in Lemma D.1, vanishes asymptotically. On the other hand, with a
convenience sample, units in the same POP may have asymptotically the same
covariates, but they could still have different treatment effects, because they are
not i.i.d. draws from a superpopulation.

Point 2 shows that the BRSVE is equal to the average of the PCVE and
POPVE. Then, it follows from Point 1 of Lemma I and Point 1 of Lemma D.1
that 52— Vy,5(7) is upward biased. Point 2 is related to Lemma 6.4 and Theorem

3.3 in Bai, Romano and Shaikh (2021), where the authors show that PV, (7) is
consistent for the normalized variance of 7. Here as well, the fact that P@brs(?) is
upward biased in Lemma D.1 and consistent in Bai, Romano and Shaikh (2021)
comes from the fact we do not assume that the experimental units are an i.i.d.
sample drawn from a super population.

Finally, Point 3 shows that if the treatment effect varies less within than across
POPs, the POPVE is less upward biased than the degrees-of-freedom-adjusted
PCVE and BRSVE, and the BRSVE is less upward biased than the degrees-of-
freedom-adjusted PCVE. A sufficient condition to have that the treatment effect
varies less within than across POPs is % S (r1r—7)(72r —7) > 0, meaning that
the treatment effects of the two pairs in the same POP are positively correlated.

141n our setting, the covariates are assumed to be fixed, so the fact that we consider the unconditional
variance of 7 while they consider its conditional variance does not explain the difference between our
results.
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D2. Large-sample results

ASSUMPTION 4:  When P — 400, 5 >, (71, —72r)? converges towards a finite
limit.

Let
) PV (7)
2
05, = lim ,
PP Pooo PV(T) + ILD > (T1r — Tor)?
PV (7T)
O-I?Ts =

lim —
P=+00 PV(T) + 55 3 (T1r — 72r)2 + 55 > p(Tp — )2’
where Assumptions 3 and 4 ensure the limits in the previous display exist.

THEOREM D.2: (t-stats’ asymptotic behavior) Under Assumptions 1, 2, 3, and
4,

1) 7 =7)/1/Vpop(@) L, N(O, Toop)- Onop < 1, and if 71, = o, for every r,
Uf,op 1

2) (7 = 1)/ Virs(7) LN N(0,02,). ob, <1, and if 7, = T for every p,
2 _
Opps = 1.
3) Jgair < me < O’IQ)OP if and only if 0 < limp_ 1 % 2521(7'17' —7)(12p — 7).
PROOF:

See Online Appendix H.

Points 1 and 2 of Theorem D.2 show that when the number of pairs grows,
the t-statistic using the POPVE and BRSVE, respectively, converges to a normal
distribution with a mean equal to 0 and a variance lower than 1 in general, but
equal to 1 when the treatment effect is homogenous across pairs. Therefore, those
t-tests under-reject. Point 3 shows that whenever there is a positive correlation
between the treatment effects of the two pairs in the same POP, the t-test using
the POPVE under-rejects less than that using the BRSVE, which itself under-
rejects less than that using the PCVE.

D3, Simulations

For 26 of the 82 regressions in Crépon et al. (2015a), the baseline outcome
is available in the authors’ data set, so for those outcomes we can simulate the
POPVE and BRSVE as well. Those estimators are defined under Assumption 2,
which does not hold. Therefore in those simulations, we aggregate the data at the
village level. We use two samples of 80 and 20 randomly selected pairs out of the
original 81 pairs, so as to have an even number of pairs. For each outcome, we
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simulate 3,000 vectors of treatment assignments, assigning one of the two villages
to treatment in each pair. Then, we compute 7, Vpir(7), Vpop(7), and Vi,s(7).
and the three corresponding 5% level t-tests.

The estimated error rate of each t-test is shown in Table D1 below. The error
rate of the ¢-test using the PCVE is close to 5% with as few as 20 pairs. On the
other hand, the error rates of the t-tests using the POPVE and BRSVE are larger
than 5%, even with 80 pairs. Accordingly, we run simulations again, duplicating
the random sample of 80 pairs twice to have 160 pairs. The error rate of the
t-test using the BRSVE is now close to 5%, but the error rate of the t-test using
the POPVE is still larger than 5%. With a sample of 320 pairs obtained by
duplicating the random sample of 80 pairs four times, all tests have error rates
close to 5%. With 20 and 80 pairs, we find in our simulations that the correlation
between V,q,(7) and |7| is much weaker than that between V., (7) and |7].
This explains why the -test using @pop(T) over-rejects, despite the fact %A’pop(T)
is unbiased: when |7] is large, WA’pop(T) is less likely to be large than @pair(r), SO
the POPVE t-test rejects more often. With 160 and 320 pairs, this phenomenon
becomes less pronounced. Overall, the asymptotic approximations in Points 1
and 2 of Theorem D.2 seem to hold only with a large number of pairs, contrary
to that in Point 1 of Theorem B.1.

Table D1—: Simulations with data aggregated at village-level to compute \Afpop
and Vi,

5% level t-test error rate

Variance With 20 With 80  With 160  With 320
estimator . R ) .

pairs pairs pairs pairs
PCVE 0.0504 0.0505 0.0506 0.0503
POPVE 0.1301 0.0818 0.0656 0.0565
BRSVE 0.0808 0.0619 0.0571 0.0530

Note: The table reports the error rates of three 5% level {-tests in Crépon et al. (2015a), aggregating data
at the village level. For each of the 26 outcomes in the paper for which the baseline outcome is available,
we randomly drew 3,000 simulated treatment assignments, following the paired assignment used by the
authors, and computed the treatment effect estimator 7, the pair-clustered variance estimator (PCVE),
the pairs-of-pairs variance estimator (POPVE) in Abadie and Imbens (2008), the variance estimator in
Bai, Romano and Shaikh (2021) (BRSVE), and the three corresponding t-tests. The error rate of each
test is the percent of times, across the 78,000 regressions (26 outcomes X 3,000 replications), that the
test leads the researcher to wrongly conclude that the treatment has an effect. Column 2 (resp. 3, 4,
5) shows the results using a random sample of 20 pairs (resp. a random sample of 80 pairs, the same
random sample of 80 pairs duplicated twice, the same random sample of 80 pairs duplicated four times).

D/. Application

For 152 of the 294 regressions in Panel A of Table 2, the baseline outcome is
available in the data set, so we can compute the POPVE and BRSVE. Those
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estimators are defined under Assumption 2, which does not hold in all those re-
gressions. Therefore, we compute the POPVE and BRSVE after aggregating the
data at the unit level. When the number of pairs is odd, we compute the POPVE
twice, first excluding the pair with the lowest value of the baseline outcome, then
excluding the pair with the highest value of the baseline outcome, and we finally
take the average of the two estimators. We do the same for the BRSVE when the
number of pairs is odd. We also recompute the PCVE without pair fixed effects
with the aggregated data, using the exact same sample as that used to compute
the POPVE and BRSVE. Across those 152 regressions, the POPVE divided by
the PCVE is on average equal to 1.026. The BRSVE divided by the PCVE is on
average equal to 1.014.'® In those regressions, the POPVE and BRSVE do not
lead to power gains.

E. EXTENSION: STRATIFIED EXPERIMENTS WITH FEW UNITS PER STRATA

In this section, we perform Monte-Carlo simulations to assess how our results in
Section IT extend to stratified RCTs where the number of units per strata is larger
than two, but still fairly small. Three main findings emerge. First, the error rates
of t-tests using stratum-clustered standard errors are equal to 5%. Second, the
error rates of t-tests using standard errors clustered at the unit level are larger
than 5% in regressions with stratum fixed effects, but decrease as the number of
units per strata increases. With b units per strata, and averaging across Panels
A to D of Table E1 below, the error rate of a 5% level test with UCVE and
stratum fixed effects is around 7.9%, while with 10 units per strata this error rate
is around 6.2%. Finally, the error rates of t-tests using standard errors clustered
at the unit level tend to be lower than 5% in regressions without stratum fixed
effects.

We draw the potential and observed outcomes from the following data gener-
ating process (DGP),

(E1)
Yigp = Wopligp(1) + (1 — Wyp)yigp(0) + 7p, i=1,...,ng; 9=1,....G; p=1,..., P,

where y;gp(1) and y;q,(0) are independent and both follow a N(0, 1) distribution,
{mplp ~ ild N(0,02). and (yigp(1), yigp(0)) L ~p. We either let o) = 0 or o) =
V0.1. oy = 0 corresponds to a model with no stratum common shock, while
o, = v/0.1 corresponds to a model with a shock. We draw potential outcomes
once and keep them fixed, so yigp(1), Yigp(0) and 7, do not vary across simulations.

Each stratum has G units. We vary G from two to ten. If G is even, then
half of the units are randomly assigned to the control and the remaining to the
treatment. If G is odd, then (G+1)/2 units are randomly assigned to the control.

15The variance estimator in Equation (28) of Bai, Romano and Shaikh (2021) is also on average higher
than the PCVE.
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We also set ng, = 5 or ng, = 100, and we let the number of strata PP be equal to
100.

We compute t-tests based on unit- and stratum-clustered standard errors in
regressions of the outcome on the treatment with and without stratum fixed
effects. We perform 10,000 simulations for each DGP. Table E1 presents the error
rates of the ¢-tests in each DGP.

t-tests using stratum-clustered standard errors achieve error rates close to 5%
for all data configurations (as in Table 1, with ng, = 5, the t—test using the PCVE
with stratum fixed effects under-rejects slightly, due to the DOF-adjustment).
In contrast, t-tests based on unit-clustered standard errors in regressions with
stratum fixed effects overreject the true null of no treatment effect. These results
are in line with Points 1 and 2 of Theorem B.1, which covered the special case
where G = 2. t-tests based on unit-clustered standard errors in regressions with
stratum fixed effects over-reject less as the number of units per strata increases
from two (column 2) to ten (column 10). Interestingly. it seems that unit-clustered

standard errors are approximately equal to \/% times the stratum-clustered

standard errors. If G = 2, the ratio of those two standard errors is exactly equal
to 4/(2—1)/2 = 4/1/2 as shown in Lemma I, but this relationship seems to still
hold in expectation for larger values of G.

In Panel A, t-tests based on unit-clustered standard errors in regressions with-
out stratum fixed effects have error rates close to 5%. When o, = 0, there is
no between and within strata heterogeneity in %,,(0), so it follows from Point
3 of Theorem B.1 that in the special case where G = 2, {-tests based on unit-
clustered standard errors in regressions without stratum fixed effects have error
rates close to 5%. Our simulations suggest that this result still holds when G > 2.
However, in Panel B, t-tests using unit-clustered standard errors in regressions
without stratum fixed effects have error rates lower than 5%, because there is
now between-strata heterogeneity in ﬂgp(()). We obtain similar results with five
observations per unit (Panels C and D).
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Table E1—: Error rates of ¢-test in simulated stratified RCTs with small strata

Number of units per strata
2 3 4 5 6 7 8 9 10

Panel A. iid standard normal potential outcomes and ngy = 100

UCVE without FE 0.0415 0.0734 0.0501 0.0480 0.0501 0.0478 0.0468 0.0538 0.0479
UCVE with FE 0.1685 0.1160 0.0928 0.0806 0.0705 0.0696 0.0631 0.0662 0.0614
SCVE without FE 0.0557 0.0587 0.0529 0.0545 0.0514 0.0516 0.0495 0.0524 0.0518
SCVE with FE 0.0554 0.0582 0.0527 0.0544 0.0511 0.0515 0.0493 0.0524 0.0516

5 Cunit(Tre) [5Csrat(Tre)  0.7053  0.8169  0.8720 0.8986  0.9188 0.9308 0.9408 0.9492 0.9551

Panel B. Stratum-level shock affecting potential outcomes and ng, = 100

UCVE without FE 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
UCVE with FE 0.1682 0.1105 0.0909 0.0812 0.0775 0.0671 0.0641 0.0650 0.0637
SCVE without FE 0.0518 0.0507 0.0532 0.0524 0.0566 0.0504 0.0511 0.0546 0.0528
SCVE with FE 0.0510 0.0506 0.0531 0.0520 0.0565 0.0503 0.0508 0.0545 0.0526

5 Cunit(Tre) /5 Cstrat(Tre)  0.7053 0.8163 0.8700 0.8995 0.9187 0.9313 0.9420 0.9494 0.9548

Panel C. iid standard normal potential outcomes and ng, — 5

UCVE without FE 0.0547 0.0456 0.0474 0.0575 0.0492 0.0527 0.0512 0.0527 0.0544
UCVE with FE 0.1478 0.0981 0.0872 0.0745 0.0719 0.0687 0.0629 0.0646 0.0627
SCVE without FE 0.0515 0.0542 0.0542 0.0552 0.0557 0.0548 0.0514 0.0543 0.0552
SCVE with FE 0.0397 0.0471 0.0481 0.0502 0.0522 0.0519 0.0486 0.0515 0.0529

5 Counit(Tre) /5 Cstrat(Tre)  0.7053  0.8163  0.8695 0.8079 0.9175 0.9327 0.9404 0.9485 0.9551

Panel D. Stratum-level shock affecting potential outcomes and ngp =5

UCVE without FE 0.0128 0.0152 0.0207 0.0122 0.0146 0.0173 0.0130 0.0160 0.0158
UCVE with FE 0.1539 0.1033 0.0793 0.0730 0.0687 0.0682 0.0625 0.0640 0.0671
SCVE without FE 0.0533 0.0546 0.0529 0.0520 0.0513 0.0564 0.0507 0.0536 0.0574
SCVE with FE 0.0430 0.0469 0.0476 0.0470 0.0475 0.0526 0.0482 0.0510 0.0545

S.€unit(Tfe)/5-€strat(Tre) 0.7053  0.8171  0.8703 0.8991 0.9179 0.9315 0.9419 0.9484 0.9552

Note: The table shows the error rates of t-tests based on unit- and stratum-clustered standard errors
in regressions with and without stratum fixed effects. Across simulations, we vary the number of units
per strata from two to ten (G = 2,...,10); we vary the number of observations per unit to either
Ngp = 5 or ngp = 100; and we set the number of strata to P = 100. For each value of G, we simulated
10,000 samples from the following data generating processes: independent and identically distributed
(iid) standard normal potential outcomes in Panels A and C, and a model with an additive stratum-
level shock affecting both potential outcomes in Panel B and D. UCVE and SCVE stand for unit- and
stratum-clustered variance estimators, respectively. FE stands for stratum fixed effects. % i
the average across simulations of the ratio of standard errors clustering at the unit and stratum levels in
regressions with stratum fixed effects.
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F. ARTICLES IN OUR SURVEY OF PAIRED OR SMALL STRATA EXPERIMENTS

Table F1—: Paired RCTs and stratified RCTs with small strata

Reference Search source

Paired RCTs
Ashraf, Karlan and Yin (2006) AEA registry
Banerjee et al. (2015) AEJ: Applied
Crépon et al. (2015a) AEJ: Applied
Beuermann et al. (2015a) AEJ: Applied
Fryer Jr, Devi and Holden (2016) AFEA registry
Glewwe, Park and Zhao (2016a) AEA registry
Bruhn et al. (2016a) AEJ: Applied
Fryer Jr (2017) AFEA registry

Small-strata RCT's
Attanasio et al. (2015) AEJ: Applied
Angelucci, Karlan and Zinman (2015) AEJ: Applied
Ambler, Aycinena and Yang (2015) AEJ: Applied
Bjorkman Nyqvist, de Walque and Svensson (2017) AEJ: Applied
Banerji, Berry and Shotland (2017) AEJ: Applied
Lafortune, Riutort and Tessada (2018) AEJ: Applied
Somville and Vandewalle (2018) AEJ: Applied

Note: The table presents economics papers that have conducted clustered and paired RCT's, or clustered
and stratified RC'T's with ten or less units per strata. We searched the AEJ: Applied Economics for papers
published in 2014-2018 and using the words “random” and “experiment” in the abstract, title, keywords,
or main text. Four of those papers had conducted a clustered and paired RCT and seven had conducted
a clustered and stratified RCT with ten units or less per strata. We also searched the AEA’s registry
website for RCTs (https://www.socialscienceregistry.org). We looked at all completed projects,
whose randomization method included the word “pair” and that had either a working or a published
paper. Thus, we found four more papers that had conducted a clustered and paired RCT. Beuermann
et al. (2015a) use a paired design to estimate the spillover effects of the intervention they consider. Their
estimation of the direct effects of that intervention relies on another type of randomization. We only
include their spillover analysis in our survey and in our replication.
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G. RESULTS WHEN THE NUMBER OF OBSERVATIONS VARIES ACROSS UNITS

In this section, we extend some of the results in Section II to instances where
units may have different numbers of observations, as is often the case in practice.

G1. Upward bias of the pair-clustered variance estimator (PCVE)

In this subsection, we show that when units have different numbers of observa-
tions, our recommendation of using the PCVE still applies.

When units have different numbers of observations, there are several estimators
of the treatment effect one may consider. 7, the standard difference in means
estimator, is such that

1 P 2 MNgp Ngp
T2 2. YaWa— Z Z D> Vigp(1 = Wep),
p=1g=11i=1 p=1g=1i=1

where T" and C' respectively denote the total number of treated and control ob-
servations. When the number of observations varies across units, 1" and C are
stochastic. For instance, assume one has two pairs. In pair 1, units 1 and 2 both
have 1 observation, but in pair 2 unit 1 has 1 observations while unit 2 has 2 ob-
servations. Then, T" is equal to 2 with probability 1/2, and to 3 with probability
1/2. These stochastic denominators in 7 make it impossible to derive a closed-
form expression of its expectation and variance. One can still show that when
the number of pairs goes to infinity, 7 converges toward 7, the average treatment
effect, and one could also use the delta method to show that 7 is asymptotically
normal and derive its asymptotic variance. However, throughout the paper we
have focused on estimators’ finite sample variances.

Therefore, instead of T we consider another, closely related estimator, whose
expectation and variance are straightforward to derive even when the number of
observations varies across units, and which is unbiased for a causal effect that
differs from 7 but that is still relatively natural (see Imai, King and Nall (2009)
for closely related discussions). Let 7 denote the coefficient of Wy, in the weighted
OLS regression of Yjg, on a constant and W, with weights Vg, = n,/ ngp.16 Let
a be the intercept in that regression. One can show that

(G1) ?:Pznpz Y gp — 1_ng? Pznp?p»

where 7 = n/P. Under Assumption 2, 7 = 7. Hence, T generalizes T to the
case where the number of observations varies across units. 7 is also one of the

16Specifically, the intercept & and 7 are such that (&, 7) = argmin,, . Dop g 2 Vap (Yigp—a—TWgp)2.
17



estimators considered by Imai, King and Nall (2009), though the fact 7 can be
obtained by weighted least squares is not noted therein.

7 is generally not unbiased for 7, unless in every pair, the two units have the
same number of observations, i.e., ni, = ng, for all p (Imai, King and Nall, 2009).
On the other hand, 7 is unbiased for

1 Np (Tip 7'210)
i _Pzp:ﬁ<2 R

where 74, = i 2 [Yign(1) — Yigp(0)] denotes the average treatment effect in

unit g of pair p.!” 7* is a weighted average of the pair-specific average treatment
effects (71, + 72p)/2. Those pair-specific average treatment effects give equal
weight to the average treatment effect in each unit, rather than weighting them
according to their number of observations like 7,, does.Imai, King and Nall (2009)
show that

V(7) PQZ_Q 1)+ A,(0))%,

where A, (1) =7y, (1) —¥s,(1) and A,(0) = 71,(0) —5,(0). They propose various
estimators of that variance, and show that they are upward biased. Instead,
we rely on the fact 7 can be obtained by weighted least squares to propose an
estimator whose properties have not been studied in the randomization-inference
framework we consider: the PCVE attached to 7.

First, the following lemma extends Lemma C.1 to the PCVE in a weighted OLS
regression. '

[Tp_A]z-

3[\)'@3[\3

LEMMA G.1 (Pair-clustered variance estimator for 7): @pair (7) = P% Yooz

PROOF:

See Online Appendix H.
__Then, we study the asymptotic distribution of the ¢-statistic attached to 7 and
Vpair (7). To do so, we make the following assumption.

ASSUMPTION 5:
1) For all g and p, 1 < ngy < N for some fized N < +o0.

2 s
2) As P — +00, > (nﬁ) . B Z (32 ) E[7p), and & > (32)" (E[7])? con-
verge to strictly positive constants, and 7% = }13 Z 7_%2 (%’3 + %E) converges
to a constant T

17With a slight abuse of notation, 71, and 7o, refer to the ATE in pairs 1 and 2 of POP r, while Tip
and T2, refer to the ATE in units 1 and 2 of pair p.

18We follow the definition of clustered variance estimators for weighted least squares in Equation (15)
of Cameron and Miller (2015).
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3) As P — +oo, Z;;l]E [|12212+¢|7, — E[7)|*T] /gffe — 0 for some € > 0,
where §123 = P2V (7).

Point 1 of Assumption 5 requires that the number of observations in every unit

is greater than 1 and lower than some fixed N. Combined with Point 2 of As-

sumption 3, Point 2 of Assumption 5 ensures that PVPW( 7) converges towards a

strictly positive limit. Point 3 guarantees that we can apply the I(};apunov central
\

limit theorem to ( pr) . Let 0' = llmP_)+OO

PV(E)+4 5, () (B(F)—r=)?

THEOREM G.2: If Assumptions 1 and 5, and Points 1 and 2 of Assumption 3
hold,

(T—19/ \A/pai,«( ) LN N(0,02,,). 02, <1, and if Tgp = T for every g and
p, or if n1, = ngy, and 7, = T for every p, then le =1.

PROOF:

See Online Appendix H.

This theorem shows that when the number of pairs grows, the t-statistic of the
weighted least squares estimator using the PCVE converges to a normal distribu-
tion with a mean equal to 0 and a variance lower than 1 in general, but equal to
1 when the treatment effect is homogenous across units, or when the treatment
effect is homogenous across pairs and in every pair the two units have the same
number of observations.

Theorem G.2 shows that when units have different numbers of observations,
the PCVE attached to 7T is upward biased asymptotically. We now show that the
same holds for 7., the pair fixed effects estimator, provided one applies some kind
of degrees-of-freedom correction to its PCVE. As shown in Point 3 of Lemma C.1,
the PCVE of 7. is @pair(?fe) = 25 L wi (7 —7re)?. Let @y = w, (1 — 2wp)_1/2.

LEMMA G.3 (The adjusted PCVE for 7y, is upward biased): Under Assumption

1, and if w, < 1/2 for all p, E [Z o (Tp — Tre) } = V(7re) (1 —I—wa&%) +
Zp p[E(Tp — 7re)]?. PROOF:
See Online Appendiz H.

Lemma G.3 shows that the adjusted PCVE, where the w, are replaced by w,,
is upward biased for the variance of 7y.. The adjustment in @, is similar to a
degrees-of-freedom adjustment. In fact, under Assumption 2, the adjusted PCVE
is equal to %Vpair(?fe). The requirement that w, < 1/2 for all p is mild.
For instance, if n1, = ng, for all p, this only requires that every pair has fewer
observations than all other pairs combined. If there is an integer L such that

p» < L for every p, one can show that liminfE [P <@pa¢r(?fe) — V(?fe))] > 0:

P—4o00

the unadjusted PCVE is also upward biased asymptotically. When the number of
observations varies across units, Vpar(Tre) does not coincide with the estimator
of the variance of 7y, considered in Imai, King and Nall (2009). It seems that
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Lemma G.3 above is the first result to justify the use of the PCVE attached to
Tte, in paired RCTs where the number of observations varies across units.

G2. Ratio of the UCVE and PCVE with pair fized effects

In this subsection, we derive the ratio of the UCVE and PCVE with pair fixed
effects when units have different numbers of observations.

LEMMA G.4 (Ratio of the UCVE and PCVE with pair fixed effects when units have different numbers
~ ~ 2 2

Vunit(Tre) / Vpair(Tre) = Ep Cp <(%§’) + (Z—?) ), where, for all p (, > 0 and

>_p G = 1. Therefore, @umt(?fe)/@pa"(?fe) € [3.1].

PROOF: R R
The formula for Vonit(Tre)/Vpair(Tfe) follows from Points 3 and 4 of Lemma
C.1, with

2 [~ ~ 2
wy (Tp — Tre)

2 (> ~

5
1wy (Tp = Tre)
< « 0 2 2 < 0
nfp—l—nﬁp < (n1p+ngp)?, so <T%’) + nz;,) < 1. (nip—ngp)? = nfp —2n1pnop +
2 2
ngp >0, so 2n%p + 2n§p > (n1p + n2p)?, and (%ﬂp) + (7;—2;”) > % Therefore,
Vum’t(?fe)/vpair(?fe) € [% 1]-

)

Lemma G.4 shows that @umt(?fe) / \A/pair(?fe) is a weighted average across pairs
of the sum of the squared shares that each unit accounts for in the pair. The
sum of these squared shares is included between a half and one, so this ratio
is included between a half and one. Figure G1 plots this ratio when ni,/ng,
is constant across pairs. \Aiumt(?fe) /\A/pair(?fe) is close to 1/2 when njp/ng, is
included between 0.5 and 2, meaning that the first unit has between half and twice
as many observations as the second one. For instance, if in every pair, one unit
has twice as many observations as the other, then the ratio of the two variances
is equal to 5/9. Based on Figure G1, one can also derive an upper bound for
\A/um-t(?fe) /@pair (Tfe), when ny,/ng, varies across pairs. For instance, if in every
pair, one unit has at most twice as many observations as the other, as should
often be the case in practice, then the ratio of the two variances is at most equal
to 5/9. Overall, Lemma G.4 shows that Point 2 of Lemma I still approximately
holds when units in each pair have different numbers of observations, unless they
have an extremely unbalanced number of observations.
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Ratio of the UCVE to the PCVE

0 0.5 1 15 2 25 3
Nip/N2p

Figure G1. : Ratio of Unit-Clustered and Pair-Clustered Variance Estimators
with Pair Fixed Effects

Note: UCVE and PCVE stand for unit- and pair clustered variance estimators, respectively. nip and
n2p are the number of observations in units 1 and 2 of pair p, respectively.

H. PROOFS OF THE RESULTS IN THE ONLINE APPENDIX
H1. Proof of Theorem B.1

The proof relies on Lemma H.1 and on the two equations below.
Using a similar reasoning as that used to show Equation (H40) in the proof of
Lemma H.1, one can show that

—~ 2+€
(H1) Eﬂnuﬂ }gﬂh<+m.

for all d and p and for some M; > 0.
By Lemma H.1, Assumption 2, and Point 2 of Assumption 3,

1 P . 1 . . 1 .
(H2) T F Zp: (. PEIEOOF zp:E[Tp] - PEI—EOOF Zp:Tp - PEI—II—IOOT'

21



PoiNT 1

Note that by Point 3 of Assumption 1, 7 — 7 =7 — E[7] = >_ (7, — E[7])/ P
is a sum of independent random variables (7, — E[?p])f;:l with mean zero and
with a finite variance by Equation (H40). As Z;::l E[|7 — |?*/ S5 — 0 for
some € > 0 (by Point 3 of Assumption 3), then, by the Lyapunov central limit
theorem, (7 — 7)/(Sp/P) = >_,(7p — 7)/Sp < N(0,1) as P — 400, where
5% = 25:1 V(7,) = P?V(7). Therefore,

(H3) 7 —1)/VVF) -5 N(0,1).

Then,

SR B
P P
p:l =1
P ~2 ~2 P 2
B Ty — E[Tp] 9 s
(F4) =) 5T 5
p=1 p=1
P 1 <&
oL 2
(H5) — PEI-Il—looP ;(Tp 7).

The first equality follows from Equations (3) and (A4). The third equality

follows from E[7,] = 7,. Let’s consider each of the terms in Equation (H4).
~2 _ma2 . .
25:1 il ]]E[Tp} 0 by Lemma H.1. Then, 72 A N by Equation (H2)
P—+oo

and the continuous mapping theorem (CMT). Equation (H5) follows from these
facts, and from Point 2 of Assumption 3.

Given Equation (H5), Point 2 of Assumption 3, the Slutsky Lemma and the
CMT, as P — 400,

T—T T—T PV (7T d
— - — — ( )A — N(0, U;gair).
\/Vpair(?) \/ (T) PVpair(T)

(H6)

~

Finally, by Lemma I, @pam (7) = Vpair(Tfe), and by Assumption 2, 7 = Tye.
QED.

22



PoINT 2

~

By Lemma 3, @pair(?) = 2Vunit(Tre). so given Point 1 of this theorem, the
result follows.
QED.

PoINT 3

Pi\iumt (/7:) — Pi}pair (7/:)
) R ANAUEES) SACED B
p p b

=52 lim {%ZE[?}D(D%(O)]—E[?(l)]E[?(O)]}

~ |

P—400
(1)
=2, Y { @0 -30) @0 -30) - 3 S0l0) = B0 T 1) - n)

The first equality follows from Equation (A8). The convergence arrow follows from
~ ~ 14+€/2
the fact E UY})(l)Y})(O)’ ] is bounded uniformly in p by Equation (H1) and the

‘1+€/2

Cauchy-Schwarz inequality, from the fact that E Ulf/\})(d) is also bounded

uniformly in p, from Point 3 of Assumption 1, from the SLLN in Lemma 1 in
Liu (1988), from the CMT, and from Point 2 of Assumption 3. The last equality
follows from the same steps as those used to prove Lemma 3. The result follows
from Equations (HT7), (H5), and (H3), and a reasoning similar to that used to
prove Equation (H6).

QED.

H2. Proof of Lemma C.1

Point 1
First, we introduce the formulas for the PCVE and UCVE in a general linear
regression. Let €;¢, be the residual from the regression of Y4, on a K-vector of

covariates Xgp, and X the (n x K) matrix whose rows are X igp- The PCVE

of the OLS estimator, 3, is defined as follows (Liang and Zeger (1986), Abadie
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et al. (2017))

(H8)
R r 2 Ngp 2 MNgp !
Vpair(B) = (X,X)_l Z Z Z €igpX igp Z Z €igpX igp (X,X)_l
p=1 \g=1i=1 g=1i=1

The UCVE of the OLS estimator, ,@, is defined as follows

P Ngp Ngp !
Z( €zngiyp>< Eingz‘gp> (xX'x)"!

1g=1 i=1

(H9)

umt (/6) X X

p

Subtract from Equation (1) the average outcome in the population Y = & dop g i Yigp =
a+7W +€ where W = %Z > g 2i Wep, and € = szg > €igp = 0 by con-
struction. Then,

(H10) Yigp =Y =T(Wgp — W) + €igp-

Apply Equation (H8) to the residuals and covariates of the regression defined by
Equation (H10).'® Then,

— 2
) SR |2, (Wop =) T, g} |
(2, Xy X Wy = )]

The numerator of @pair (T) equals

W)SET, — WSEU,]”

3 [zwgp z]

p g )

Z
(H12) z[ SET, —ZSEU 2.
p

The first equality follows from the definition of SET, and SEU,. The second
equality follows from the definition of 7" and C.

9The clustered variance estimators of 7 in the demeaned regression in Equation (H10) and in the
regression with an intercept in Equation (1) are equal (Cameron and Miller, 2015).
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The denominator of \A’pair (T) equals

ZZZ(ng_W)2] = ZZ(WQP_W)27LQI’]
P g

(H13) = |=

The first equality follows from (W, — W) being constant across units. The second
equality follows from the definition of 7}, and C}. The third equality follows from
the definition of 7" and C.

Then, combining Equations (H11), (H12) and (H13),

- X, [95ET, - TSEU,)’
Vpair(T) = [Q]Q
n
-y [SET,, B SEU,,]Q
— - ==
D
QED.
PoinT 2

Apply Equation (H9) to the residuals and covariates of the regression defined
by Equation (H10). Then,

2

_ Zp Zg [(M/yp - W) > Eiyp] _
(2,5, (W — WP
25

(H14) Vanit (7)



The numerator of Vumt( ) equals
ZZ [ gp — W) Zflgp] = ZZ (Wop — (Z Ezgp>
g
= [( W)2SET2 + W SEUZ]
(H15) => [S—ESETPZ + Z;—ESEUPQ] :
P

The second equality follows from the definition of SET,, and SEU,. The third
equality follows from the definition of T and C'. Then, combining Equations
(H13), (H14) and (H15),

~

c? 12
S, |SSET? + LSEUZ|

Vum’t(ﬁ:) — T2
(5]
SET2 SEUg

= e

p
QED.
PoinT 3

Let SET) e = 23:1 E:Zﬁ Woptigp and SEU) so = Zg 1 Z"‘“’ Wp)tigp

respectively be the sum of the residuals w;q, for the treated and untreated obser-
vations in pair p. Averaging Equation (2) across units in pair p,

(H16) Y, =TeWp + 3 + Tp,

v o 1 2 Ngp v . T — L 2 Tgp — L 2 —
where Y = np Zg 1 2228 Yigp, Wp Z(] 1222 Wep = Eq 1 Wopngp =

7%’ and U, = = i 12””’ Uigp- Substractmg Equation (H16) from Equation
(2).
(H17) Yigp = Yp = Tpe(Wop — W) + tigp — Tp.
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{uijp } is orthogonal to the pair-p fixed effect indicator {44y}, so

P2 Ty

E : § :E :“ijp"gigp =0

p'=1g=11i=1

2 "gp
1

(H18) ey
g

=1 3=1

K3
Uigp = 0,

where the equivalence holds because d;4, = 1 if and only if observation 7 belongs
to pair p. This implies that for all p W, = 0. Equation (H17) then becomes a
regression with one covariate and the same residuals as in Equation (2):

(H19) Yigp = Yp = Tre(Wgp — Wp) + tigp.

Now, it follows from Equations (H8) and (H19) that?°

S (S S (W~ )|

(H20) Vpair (Fe) = . —
(S 2 S (W = W,)?)

The denominator of i\’pair (Tte) equals
2 2
[Z Z Z(qu - Wp)2] = Z Z(qu - Wp)Qngp]
p g i
2
= Z[T 1-W,)*+C,W ]]
[ o2 12\
"p Ty

L P
o)
PR

- 2
(H21) = Z(nlp+n2p1) ] )

L P

20The clustered variance estimators of Tfe in the regression residualized from the pair fixed effects in
Equation (H19) and in the regression with pair fixed effects in Equation (2) are equal (Cameron and
Miller, 2015).
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The numerator of \A"pair (Tre) is equal to

P 2 ngp o 2 P 2 s gp 2
Z Z Z Uigp(Wep = W) | = Z Z(ng —Wp) Z Uigp
p=1 \g=1i=1 p=1 \g=1 i=1

(—Wo(SET e + SEU, o) + SET, s.)

I
R

S
Il
—

(SET} se)?,

M~

(H22)

]
Il
—_

where SET, to + SEU, o = Z;Zl S0 a9, = 0 from Equation (H18). Finally,

SETy,re = Z WopYigp = Vp — TreWepl

9.t
= Z WopYigp — (”A/p + ?fE) Z Wop
g5t g.i

= Z WopYigp — (?p - 7A'feWp + 7A'fe)Wp”p

g1
= Z WopYigp — Wp Z Yigp — (1 — Wp)?fewp”p
g,t g,i

= Z WopYigp — Wp Z WopYigp + Z(l = Wep)Yigp | — (1 = Wp)Wp”p?fe

950 9,1 gt

=(1- Wp) Z WopYigp — Wp Z(l = Wop)Yigp — (1 — Wp)Wp”p?fe
gt gyt
Zg,i WopYigp _ Eg,i(l — Wyp)Yigp s )
Wpny (1—=Wp)np ‘

— (=) Wy (

Niph2p Zg,yj ngyiyp Zg,i(]‘ - ng)yiyp ~
= 5 p - — Tfe
np Zg,i WQP Zg,i(l - ng)

(H23)
_ naphop o~ o
nip + nap (T = Tre)-
The first equality follows from the definition of SET), r.. The second equality
follows from the definition of u;g, in Equation (2). The third equality follows
from the definition of W, and Equations (H16) and (H18). The ninth equality

follows from the definition of 7,.
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Therefore, combining Equations (H20), (H21), (H22) and (H23),

P
Vpair(?fe) = Z w;%(?p - ?)2
p=1

QED.

PoINT 4

Applying the definition of the UCVE from Equation (H9) to the regression in
Equation (H19),

[25:1 2321 (2028 wign(Wp — Wp))Q]
(S0 2, S vy, — W)

(H24) Vonit(Tre) =

The numerator of i\]unit(?fe) equals

P Ngp . 2 P - Ngp 2
991 D ST AV IED ) TR O oiity
p=1g=1 \i=1 p=1g=1 i=1

P
-y ((1 —W,)2SET? . + W.SEU? )
p=1
P 2 2
C T
— 2 )
p:] p p
P
G 2 1 1
o Z 5 SETp fe T2 + C?
p=1 "p p p
& 1 1
(H25) =2 (my + ) *SETSy, (n—z ¥ n_2> |
p=1 1p 2p

The second equality follows from the definitions of SET, ;. and SEU, ;.. The

third equality follows from Equation (H18). i.e., SET) se+SEUp pe = 32, >, Wigp =

0, for all p, so SET?, = SEU? o fo: and the definitions of T}, and C). Finally, com-
29
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bining Equations (H21), (H23), (H24) and (H25),

P 2 2
7 ~ 2/~ ~ n n
ot =297 ((32) + (32) )
p p

p=1

QED.

H3.  Proof of Lemma D.1

PoiNT 1

~ 1
Vpop(T) = 52

WE

(?1r - ?27”) s

Il
—

T

(7o + T3 — 271 T2r).-

I
3=
WE

ﬁ
Il
—_

Taking expected value,

S 1

E[Vpop(T)] = P2 E(F2 + 75, — 271, 7ar),

WE

r=1

(V(?M’) + V(7o) + 7'12r + 7'22r — 271,72y ),

I
o=
NE

a
Il
N

[l
Rl
NE

R
- 1
V(7p) + 2 Z(Tlr — 7o),
r=1

S
Il
—

R
(H126) = V(@) + % > (1 — 720)?.
r=1

The second equality follows from properties of the variance and that E[7},] = 71,
and E[7y,] = m,. The third equality follows from P = 2R. The fourth equality
follows from Equation (3). QED.

PoINT 2
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T
1 =R 1
=5p2 Z(Tp T 72 Z Tiy + Top — 2717 Tor)
p
1~ = 1~ =

= §Vm1r(7') + §Vp0p(7')
QED.
PoINT 3

B[0p(7)] < B [PLW ).

R
& (2R-1)) (ri, —72)* < ZRZ(TP -
r=1 p=1

R R
< (2R-1) Z(Tfr + TQQT — 271, 12r) < 2R Z[Tfr — 2T+ T2+ TQQT — 279, T + 7-2],
r=1 r=1
R

R
Z (11 — T2r) + QRZ 271,72 — 2(T1r + Tor)T + 277,
r=1

—

R R
0< Z(Tlr — )2+ 4RZ(T” — 1) (T2 — 7).
r=1 r=1
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The second inequality follows from Points 1 and 1 of this lemma. Let 7, =
%(Tlr + 79;). Then,

~ R P ~ =R
Ef¥ep(] < E | 5 Ty (7).
R R
=S0< Z 2(mpr — T.r>2 + 4R Z(ﬁr — Ty + Ty —T)(T2r — Tp + Tp — 7),
r=1p=1,2 r=1

R 1 R
S0< Z §(Tp7~ — T.,,)Q + RZ[(TM — Ty )(Tor — Tp) + (T — T)Q],
r=1

r=1p=1,2
& 1 & 1
@OSZZ §(Tpr_7—7‘)2+RZ - Z (Tpr — )2 + (1 — 7)? |,
r=1p=1,2 r=11] p=12
1 1 1
@R D g <) (=)
r=1p=1,2 r=1

This proves inequality a).

Then, if + Zle D p=12 S t7r)? < 2521(7'.7«—7')2, it follows from Point
2 of the lemma and the previous display that

E [Tom(7)] + 3 B | g Tpir (7

P - 1 P - N
[ﬁVPOP(T)] + 5 E [ﬁvpair(ﬂ]

P -~
P_ 1Vbr.s(7_):| ’

I
&=
— =

which proves inequality b).

Similarly, if & 25:1 D12 Hrpr + 1) < 27{11(7‘.7, —7)2, it follows from
Point 2 of the lemma and the previous display that

~ 1 EN N 1 P N
E [Virs ()] <5 E [Vop()] + 5 E [ﬁvpm(r)]
1 P - N 1 P - N
S§ [—Vpair(T)] + § E [ﬁvpair(T)]

which proves inequality c).



QED.

H/. Proof of Theorem D.2

PoiNT 1

~ ~ 1
PVpop(T) = PV(T) = - Z[Tlr 271, Tor + Tan] — i ZV Tp)

r=1 p=1
1 2 1
_ ~2 ZA ~ ~2y 2
=525 3 IrTor > E@G) -]
P p=1 P r=1 P p=1
P -9 ~2 R R
75— E[T, 1 L 1
e R N R DR
p=1 r=1 r=1
P 1 &
(H27) = lim & > (rir = 720)”.
r=1

The second equality follows from the properties of the variance. As P — —+oo,
by Lemma H.1, ZP_l —’ﬂd %4 0. Likewise, as R = P/2 — 400, by Lemma 1
in Liu (1988), % 7,7, /R — S22 11,70,/ R 24 0, because E[|7y, 7| 4/2] is
uniformly bounded in r by Equation (H40) and the Cauchy-Schwarz inequality,
(T1rT2r )% is a sequence of independent random variables by Point 3 of Assump-
tion 1, and E(71,72,) = E(71,) E(T2r) = 71,72,. Finally, the convergence arrow
follows from Point 2 of Assumption 3 and some algebra.

The result follows from Equations (H3) and (H27) and a reasoning similar to
that used to prove Equation (H6).
QED.

PoINT 2

~ ~ 1 ~ ~
PVyor(7) = PY(7) = 5P (Vi (7) = V(7)) + 5 P(Vpop(7) = V(7))
P R
1 1 , 1 1
ﬁplﬂfwz—a (=743 im 5 2 (e = 7r)



The first equality follows from Point 2 of Lemma I. The convergence arrow follows
from Equations (H5) and (H27). The result follows from the previous display,
Equation (H3), and a reasoning similar to that used to prove Equation (H6).
QED.

PoINT 3

2 2
Upair < Upop?

R
. 1 2 . 1 2
< PEI—EOO E Z(Tlr B T2T) S PEIEOO E Z(Tp B T) ’
r=1 p=1
R

R
. 1 ) 1
& PLHEOO = ;(Tfr + 7'22T — 271, 79r) < PLIIJI:OO R Z[Tfr + TQQT —2(71p + T2r)T + 27-2],

R
. 1
©0< lim - ;[Qﬁmr — 2(71y + Tor)T + 272,
R

1
=0< N — E — > — T).
0 - PEIEOO R 7:1(7-” T)(Tzr T)

2 2 2 2 2
Then? Upair < Opsr < Tpop < Upair < Opop-

Point 4 is straightforward so we do not prove it.
QED.

H5.  Proof of Lemma G.1
Let e;4p be the residual from the weighted least squares regression. One has

Let Y = % > g.p VapYigp- The previous display implies that

~ V. 1 1
Y = az%"‘TEZVngqp"‘ ﬁzvgpeigp
,9,p ,9,p ,9,p
=2a+ T,

where the second equality follows from %Zi%p Vgpeigp = 0, by the first-order
condition attached to & in the weighted OLS minimization problem. Then, com-
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bining the two preceding displays implies that

1~ 1
(H28) Yigp = 5¥ =7 (Wyp - 5) + €igp-

The next step is to compute the clustered variance estimators for the weighted
least squares estimator. To do so, we apply Equation (15) in Cameron and Miller
(2015) to the residuals and covariates of the regression defined by Equation (H28).
This equation implies that

Vop(Wep — 3 i Cigp i
(F29) Vpair (7) = 2y [ZVn W= DT 2] .
|3 S i Van (W — )7

Let Yigp = & + W,,7, Y(0) = &, and Y (1) = & + 7. Note that

€; ~
Z Wop nZQP = Z Wop(Yigp — Yigp)/mgp
%9 gp 1,g
= Z ngygp(l) - ?(1) Z Wop
g g
(H30) =Y,(1) =)

pl

The second equality follows from W, Yig, = Wy,Yig,(1), the definition of y,,(1)
and ng?,'gp = ng?(l). The third equality follows from the definition of IA/p(l),
Point 2 of Assumption 1, and the definition of Y (1).

Likewise,

—~ ’np/ ~

.
(H31) D (L= Wyp) 2 =Y, (0) -
ig gp p




The numerator of \A/pair(?) equals

>

p

7

2 2
Z Vv (ng - %) Zeigp] - Z [Z Tp (ng - %) (Wep +1—=Wy,) Z Cigp
g

n
P g i gp

I
=[]
‘d:w

1 €; 1 €;
(1 — 5) E Wyp—2 — 5 E (1—W,,)—2~
- Tgp Tgp
i,9

()

Il
=M =M
*’;|t§w

=~ |~s:w

~ Nyt = ~ TNyt
Yo(1) = D0 V(1) = %(0) + 3 =Y, (0)
p P

/

(H32) 7 =71

The second equality follows from the fact that W, — % =1- % for the treated

units and Wy, — % = —% for the untreated units. The third equality follows from
Equations (H30) and (H31).

The denominator of \A/pair (7) equals

(H33) -
Then, combining Equations (H29), (H32) and (H33),
~ - ng = 9 1 'n]% =N 9
(H34) Vipair (T) = Z ) [7p—7]° = P2 Z 72 [7p — 7]°.
p p

QED.
H6.  Proof of Theorem G.2

It follows from Lemma H.1 that

_ 1 R,
(H35) ¥t = ]—DZ 7 —ER) Do,



and

(FI36) % 3 (%)2 72 ~EE2)] 5o,
p

By a similar argument to the one used in the proof of Lemma H.1, one can also
show that

(H37) % 3 (%P)Q 7 —E(5) 5 o.
p

We now use Point 3 of Assumption 5 to derive the asymptotic distribution of
(7 —)/(Sp/P). As P | E [y%|2+€|?p — R[] \2+€/§§,+6] — 0 for some € > 0
(by Point 3 of Assumption 5), then, by the Lyapunov central limit theorem,
(7 = ™)/(Sp/P) = ¥, (% — E[7))/Sp —5 N(0,1) as P — +oo, as 83 =
PV(7) = 3,1 V (27).

Therefore,

(H38) 7 —1)/VVE) -5 N(0,1).
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=52 (2) G- (%) Ve
p=1
1 T\ 2 1 E a2
=52 (%) G- -5 X () BG) - BRI
P p=
LS () e g ey LSS () ey g
P (3) G2+ 7) - 5 X (3) B - B
P o
LX) s b () e b () b () e
P p p p=1

P . 1 ny\2__ 9 . 1 Ny \ 2 . 1 np\2_
2 i p3(F) BRI O i 53(F) -t ()
Tl 52 () B 0 i 50 ()l 5 2 (5) B

n
(H39)
1 - T\ 2
: - p 0012
= i p 2 () -

The first equality follows from Equation (H34) and the fact that the (?p);le are
independent across p by Point 3 of Assumption 1. The second equality follows

from the definition of variance. The convergence in probability follows from Equa-
tions (H35) and (H36), (H37), and Point 2 of Assumption 5.

Then,
F-rt  _F-E[f] \/W
\/@pair (7':) \/V(?) PV pgir (7)

L N(0,02,,).

wls

The convergence in distribution follows from Equation (H39), Equation (H38),
Lemma H.2, the Slutsky Lemma, and the CMT.
QED.
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H7.  Proof of Lemma G.3

[Zw — 7Tfe) ] Zw E[(7) — Tfe)?]
_ zwp (o — 770) + B~ 7))
_Zw (%) + V(Fre) — 2Cov(y, 7re) + [E(F — 7r))2]
- Zw (7) + V(7o) = 20V (7)) + [E(F — Fre))?]
:pr [1— 2w, V(%) + V(7. Zw +Zw2[IE — 7re)l?
_ZwVTp ) + V(Fre Zw +pr[E = 7o)l
= V(7o) (145, 5) @% 56, - 7

The first equality follows from the linearity of the expectation and the fact that
the weights w), are not stochastic. The fourth equality follows from Point 3 of
Assumption 1. The sixth equality follows from the definition of w,. The seventh
equality follows from the definition of the variance, the definition of 7y, and Point
3 of Assumption 1.

QED.
HS8. Auziliary Lemmas to prove Theorems B.1, D.2, and G.2

LEMMA H.1: Let g > 1, under Points 2 and 8 of Assumption 1, and Assump-
tion 2 or Point 1 of Assumption 3,

PZ(”’J) ~E(7)] 50

Proof. Assumption 2 implies Point 1 of Assumption 3, so it is sufficient to show
that the result holds under Points 2 and 3 of Assumption 1, and Point 1 of
Assumption 3.
Note that by Point 3 of Assumption 1, ((327,)7 — E[(%ﬁ?p)q])g’:l, g>1isa
sequence of independent random variables with mean zero.
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Note that, for all p,

o] o
()™ wﬂy/mﬂ)

" Hiate gteqy 1/(a+e)
=N ((E WopYgp(1) ]) < Wop)Ygp(0) ])
()l

g
g g
1/(g+e) L(qte)
(Zg: (% |q+ ) Zg: <; |4, (0) ) )
(H40)

4
The first equality follows from the definition of 7,. The first inequality follows
from Minkowski’s inequality, and from Point 1 of Assumption 5. The third line
follows from the definitions of Y( ) and Y, »(0). The fourth line follows from
Minkowski’s inequality. The fifth line follows from Wy, being a binary variable.
The sixth line follows from Point 2 of Assumption 1. The seventh line follows
from Point 1 of Assumption 3.

Using the LLN in Lemma 1 in Liu (1988), the previous facts and the fact that
almost sure convergence implies convergence in probability, one concludes that

(H41) % > (2) e - EG) 5o
p

QED.

LEMMA H.2: [Strictly positive limit for PV(T)] Under Point 2 of Assumption
3 and Point 1 of Assumption 5, limp_,~ PV(T) > 0.
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Proof. Note that

The first equality follows from the definition of 7 and Point 3 of Assumption 1.
The first inequality follows from the fact that 0 < % < nﬁ—p < N (which follows
from Point 1 of Assumption 5). The second equality follows from the definition
of V(7). The second inequality follows from Point 2 of Assumption 3.

QED.
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