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A Proofs

Proof of Proposition 1: By Assumption 1, a person with m%; = m¢, = m* chooses A over B
when M > I'(m*,eap), and chooses C' over D when M > I'(m*,ecp). Define (M) such that
I'(m*,&(M)) = M. Then I'(m,0) = m for all m and I" increasing in e together imply &(M) = 0
when M = m™ and € is increasing in M. Finally, using £(M) and the fact that ecp 4 keap, the
choice probabilities as a function of M are Pr(A) = Pr(eap < &(M)) and Pr(C) = Pr(ecp <
E(M)) = Pr(eap < (M) /k).

(1) M —m* > 0 implies (M) > 0 and thus, given Pr(eap < 0) = Z, Pr(A) > Z and Pr(C) > Z.
Moreover, k > 1 implies é(M)/k < &(M) and thus Pr(A) > Pr(C); k < 1 implies &(M)/k >
£(M) and thus Pr(A) < Pr(C); and k = 1 implies &(M)/k = (M) and thus Pr(A) = Pr(C).

(2) M —m* < 0 implies (M) < 0 and thus, given Pr(eap < 0) = Z, Pr(A) < Z and Pr(C) < Z.
Moreover, k > 1 implies €(M)/k > (M) and thus Pr(A) < Pr(C); k < 1 implies &(M)/k <
£(M) and thus Pr(A4) > Pr(C); and k = 1 implies &(M)/k = &(M) and thus Pr(A) = Pr(C).

(3) M —m™* =0 implies &(M) = &(M)/k = 0 for all kK > 0, and thus Pr(A) = Pr(C) = Z for all
k> 0.

Proof of Proposition 2: Proof of part (1): Because map = I'(m z,e4B) = m¥z + cap, we have
E(map) = mYz + E(eap). Analogously, E(mcp) = m{p + E(ecp). Then E(eap) = E(ecp)
implies E(Am) = E(mcp —map) = m&p — mig = Am™.

Proof of part (2): By assumption, the joint distribution of (¢4p,ecp) has continuous PDF f
that satisfies f(¢' +zap,e' +20p) = f(¢' — 24, — zop) for all (z4p, 2cp). Define vap =ecap—¢’
and vop = ecp — €. Then the joint distribution of (vap,vcp) has continuous PDF g that

satisfies g(vap,vop) = g(—vap,—vep) for all (vap,vep). The marginal distribution for vop



is gvep (VeD) = wa:_w 9(vaB,Vcp)dvap, and symmetry around zero implies
§oc— o0 Gven (veD)dvep = §e. o Guen (Vop)dvop = 1/2.

If m¥% g = mf&p =m*, then map = I'(m*,ea) and mep = I'(m*,ecp), and thus, given that
I" is increasing in its second argument, mgp > map if and only if eop > €ap, which is equivalent

to vgp > vap. Hence:
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(the first equality uses a simple change in variables replacing vap with —v4p, and the second

follows from symmetry about zero). Hence,
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(the first equality merely substitutes from above, the second equality uses another substitution plus
0

vcp=
uses a simple change in variables replacing vop with —veop). Combining terms yields
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the fact that symmetry around zero implies § o 9vep (Wep)dvep = 1/2, and the third equality
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An analogous argument can be used to prove that Pr(Am < 0) = Pr(vep < vap) = 1/2.



B Additional Analysis

B.1 Predictions for £(Am) when I' is Non-Linear

In Section I.C, we discuss the possibility of testing the null of Am* = 0 by testing whether the
mean of Am is zero. This test is valid under Assumption 2a where the function I is linear in both
m and e, because then E(Am) = Am*. In contrast, if I' is nonlinear, then it need not be the case
that E(Am) = Am™*, and thus a test based on the mean of Am is potentially biased.

To further explore this point, consider the EU model with additive utility noise. Under EU,
mY g = m&p, = m* and therefore Am* = 0. From Example 1, map = u™! (u(m*) + eap) and
mep = u~ ! (u(m*) + ecp/r), and thus I'(m,e) = u=(u(m) + €), eap = ean, and ecp = ecp/r-
Suppose further that E(e4p) = 0 and ecp 4 kK'eap for some k' > 0, and thus ecp 4 keap where
k =K' /r. Then E(Am) depends on k and the curvature of the utility function u as follows:

(1) If u(x) is linear, then E(map) = E(mcp) = m*, and thus E(Am) = 0.

(2) If u(zx) is strictly concave, then E(map) > m* and E(mcp) > m™*, and moreover k = 1
implies E(Am) = 0, k > 1 implies E(Am) > 0, and k < 1 implies E(Am) < 0.

(3) If u(x) is strictly convex, then E(map) < m* and E(mcp) < m*, and moreover k = 1
implies E(Am) = 0, k > 1 implies E(Am) < 0, and k < 1 implies E(Am) > 0.

Proof: Given a m*, define a function m(e) = u=!(u(m*) + ), and note m(0) = m*. Then

map = m(eap) and mep = m(ecp).

Proof of part (1): If u(x) is linear—that is, u(z) = ax + § for some a > 0 and any [—then

m(e) = m* + g/a. The results then follow from the same logic as the proof of Proposition 2(1).

Proof of part (2): If u(x) is strictly concave, then u=1(z) is strictly convex and therefore m(¢) is also
strictly convex. By Jensen’s inequality, E; ,, [m(eaB)] > m(E: ,, [eaB]) = m* and E., [m(ecp)] >
m(E-p [ecp]) = m*. It k = 1 then ecp L eap, and thus Eeo, [m(ecp)] = B,y [m(eap)]. It
follows that E [Am] = 0. If instead k > 1, then e¢p is a mean-preserving spread of 45, and thus,
since m(e) is convex, E. ., [m(ecp)] > E:,5 [m(cap)]. It follows that E[Am] > 0. An analogous
logic can be used to show that & < 1 implies E [Am] < 0.

Proof of part (3): Analogous to the proof of part (2), and so omitted.

Finally, for the case frequently discussed in the literature of EU with i.i.d. additive utility noise,
we have k' = 1 and thus & = 1/r > 1. Hence, the typical assumption of concave utility would
imply E(Am) > 0, and thus a test based on the mean of Am is biased towards rejecting the null
of Am* = 0 in favor of a CRP.



B.2 Predictions for Figure 2

We derive predictions for Figure 2 assuming that every individual ¢ has m¥ Bi = me Di= m; and
thus Am} = 0. We assume that everyone satisfies Assumption 2a and thus has map; = m} +cap,;
and mcp; = m) + ecp,i, where E(eap;) = E(ecp,i) = 0. We further assume that everyone has
median-zero noise, so Pr(eap; < 0) = Pr(ecp; < 0) = 1/2. However, we permit heterogeneity in

. t e . . . 1
m; and in the distributions of e4p; and ecp ;.

B.2.1 Predictions for Paired Choice Tasks (Panel A)

For a specific paired choice task, observed behaviors in a population are the observed proportions
choosing A over B and C over D, which we denote by f’\r(A) and f’}(C’), respectively. Hence, we
need predictions for Pr(A4) and Pr(C).

Starting at the individual level, a person with m] < M has noise-free preferences that favor
A and C, and thus, given the assumption of median-zero noise, must have 1 > Pr(A) > 1/2 and
1 > Pr(C) > 1/2. But given the flexibility to choose different distributions for esp; and ecp,;,
there are no further restrictions on Pr(A) and Pr(C). Analogously, a person with m} > M must
have 1 > Pr(B) > 1/2 and 1 > Pr(D) > 1/2, but there are no further restrictions.

At the population level, then, we can parse the population into those who prefer A and C

(AC types) and those who prefer B and D (BD types), and characterize the population by five

parameters:
q = the proportion of the population who are AC' types.
A4 = the proportion of AC types who actually choose A over B.
Ac = the proportion of AC types who actually choose C' over D.
Ap = the proportion of BD types who actually choose B over A.
Ap = the proportion of BD types who actually choose D over C.

As a function of these five parameters, the population’s (Pr(A),Pr(C)) will be

Pr(4) = qa+ (1 -q)(1-2Ap)
Pr(C) = qAc+(1—-q)(1—=Ap).

The only constraints on these parameters are that ¢ € [0,1] and that each Ag, Ac, Ag, Ap €
[1/2,1]. One can then show (see proof below) that the set of possible predictions for the population
include any (Pr(A),Pr(C)) combinations that satisfy

1

Pr(4) < J and 0 < Pr(C) < Pr(4) + % or

!The assumptions of mean-zero and median-zero noise serve to limit the set of possible outcomes; if we were to
relax these assumptions, even more outcomes would be possible even under the null of everyone having Am¥ = 0.



Pr(A) = % and Pr(A) — % < Pr(C) <1

These combinations are depicted by the gray shaded region in panel A of Figure 2. To provide some
intuition, consider one possible extreme point where Pr(A) = 75% and Pr(C) = 25%. This outcome
occurs when the population is equally split between AC types and BD types (i.e., ¢ = 1/2), where
the AC' types make no errors in the AB choice but respond randomly in the C'D choice (i.e., A\g = 1
while Ao = 1/2), while the BD types make no errors in the C'D choice but respond randomly in
the AB choice (i.e., Ap = 1/2 while Ap = 1).

This example illustrates how the full gray shaded region takes advantage of being able to have
AC types be more impacted by noise on one type of choice (above, on the C'D choice) while BD
types are more impacted by noise on the other type of choice (above, on the AB choice). However,
significant deviations from the 45-degree line are still possible even if we impose that both types
must be more impacted by noise in the same choice. For instance, suppose we impose—consistent
with the logic of EU with i.i.d. additive utility noise—that both types must be more impacted by
noise in the C'D choice. This restriction creates additional constraints that Ay > A¢c and A = A\p.
Even with this additional constraint, one can still show that the set of possible predictions for the

population include any (Pr(A), Pr(C)) combinations that satisfy?

Hence, significant deviations from the 45-degree line are still possible. For instance, one possibility
is Pr(A) = 2/3 and Pr(C) = 1/3. This outcome occurs when the population has 2/3 AC' types and
1/3 BD types (i.e., ¢ = 2/3), where the AC types make no errors in the AB choice but respond
randomly in the C'D choice (i.e., Ay = 1 while A\¢ = 1/2), while the BD types make no errors in
either choice (i.e., A\g = A\¢ = 1).

Proof of conditions for gray area in Figure 2 panel A: For any fixed Pr(A) = w, we find the param-
eters (¢, A\a, Ac, Ap, Ap) that minimize Pr(C) and those that maximize Pr(C). The constraints are
q € [0,1] and Aa, Ac, Ap, Ap € [1/2,1].

To minimize Pr(C): First note that, for w < 1/2, setting ¢ = 0, A\p = 1 —w, and A\p =1
implies Pr(A) = w and Pr(C) = 0, so the minimum Pr(C) = 0. For w > 1/2, we clearly want
Ac to be as small as possible and Ap to be as large as possible, and thus we set A\c = 1/2 and
Ap = 1. Then Pr(C) = ¢/2, so we choose A4 and Ap to minimize q. Because Pr(A) = w implies
¢g=(w—(1-Ap))/(Aa — (1 — Ap)), we minimize g by setting Ay = 1 and A\p = 1/2. Hence, the
parameters that minimize Pr(C) are ¢ = 2w — 1, Ay = Ap = 1, and Agp = A¢ = 1/2, which imply
the minimum Pr(C) = 2w —1)/2 = w — 1/2.

To maximize Pr(C): First note that, for w > 1/2, setting ¢ = 1, A4 = w, and A¢ = 1 implies

2We omit the proof of this condition since we do not use it in the main text, but the approach is similar to the
proof of the prior condition.



Pr(A) = w and Pr(C) = 1, so the maximum Pr(C) = 1. For w < 1/2, we clearly want A¢ to be
as large as possible and A\p to be as small as possible, and thus we set A\c = 1 and A\p = 1/2.
Then Pr(C) = g+ (1 — q)/2, so we choose A4 and Ap to maximize q. Because Pr(A4) = w implies
qg=(w—(1-=2AB))/(Aa — (1 — AB)), we maximize g by setting Ay = 1/2 and A\p = 1. Hence, the
parameters that maximize Pr(C) are ¢ = 2w, Ay = A\p = 1/2, and \p = A\¢ = 1, which imply the
maximum Pr(C) = 2w + (1 — 2w)/2 = w + 1/2.
It follows that (i) for any fixed Pr(A) < 1/2, we must have 0 < Pr(C) < Pr(4) + 1/2, and (ii)
for any fixed Pr(A) > 1/2, we must have Pr(4) —1/2 < Pr(C) < 1.
[ |

B.2.2 Predictions for Paired Valuation Tasks (Panel B)

For a specific paired valuation task, observed behaviors in a population are the population averages
for the two reported valuations, which we denote by E(m Ap) and E(mCD), respectively. Hence,
we need predictions for E(mapg) and E(mep).

Under Assumption 2a, individual 7 states valuations map; = m;} + €ap,; and mgp,; = m; +
ecp,i, where E(eap;) = E(ecp;) = 0. It follows immediately that, if we let m* denote the
population average for m}, then the predicted population averages for the two reported valuations
are F(map) = m* and E(mcp) = m*. Hence, the set of possible predictions for the population
include any (E(mag), E(mcp)) such that E(map) = E(mep), which is equivalent to the 45-degree

line in panel B of Figure 2.

B.3 Data for Figure 2
B.3.1 Data for Panel A of Figure 2

For the data in panel A, we rely on the meta-study by (Blavatskyy et al., 2023). In their Table 1,
they provide information on 143 CRE paired-choice experiments taken from 39 studies. Specifically,
for each experiment, they provide the total number of participants (N) along with the number of
participants that chose each of the four possible choice patterns (Nac, Ngp, Nap, and Npc). We

use this data to construct the empirical choice ratios as

_ Nac + Nap
N

_ Nac + Npc

and  Pr(C) ¥

Pr(A)

We then depict each of these 143 experiments as one circle in panel A, where the location of the

circle is given by its (13\1"(14), I/D;(C’)) and the size of the circle is proportional to its N.



B.3.2 Data for Panel B of Figure 2

For panel B, we are not aware of any analogous meta-study, and Blavatskyy et al. (2023) do not

mention any CRE experiments that use valuations. We therefore conducted our own search. We

identified only six studies that use valuations in the context of the CRE:

(1)

Freeman et al. (2019) use a modified form of valuations in the context of the CRE. Specifically,
they elicit probability equivalents in which they hold fixed outcomes H and M and vary the
probability p. Thus, the valuations they elicit do not fit into the framework that we depict

in panel B.

Schneider and Shor (2017) elicit (hypothetical) minimum prices at which participants would
be willing to sell binary lotteries A, B, C, and D using the Kahneman-Tversky parameters
(M = $3000, H = $4000,p = 0.8, = .25). While this pricing task is a type of valuation, it

does not generate data that fit into the framework that we depict in panel B.

Dean and Ortoleva (2019) conduct two paired h-valuations, using (M = $4,p = 0.8, = 0.25)
and (M = $8,p = 0.8, = 0.25). The paper does not report statistics that would permit us
to calculate the average valuations. However, we contacted the authors and they provided
the average valuations: For the first pair, E(hag) = $5.80 and E(hcp) = $5.27; for the
second pair, E(hag) = $10.66 and E(hcp) = $9.97. Because these are h-valuations while
panel B depicts m-valuations, for presentation purposes we transform these values by setting
E(mAB) = M and E(mCD) = M(E(hAB)/E(hCD)). Hence, these two experiments appear
in panel B at the locations (E(map) = $4, E(mcp) = $4.40) and (E(mag) = $8, E(mep) =
$8.55).

Castillo and Eil (2014) conduct three m-valuations, an AB valuation for (H = $10,p = 0.4)
and C'D valuations for (H = $10,p = 0.4,r = 0.5) and (H = $10,p = 0.4,r = 0.25). We treat
these as two paired m-valuation experiments, one for (H = $10,p = 0.4, = 0.5) and one for
(H = $10,p = 0.4,7 = 0.25) (these are not independent experiments because they use the
same AB valuation, but this is not important for our illustrative purposes). The paper does
not report any statistics, but the authors provided the average valuations: In panel B, the
first experiment appears at (E(mAB) = $3.95, E(m(;D) = $3.98), and the second experiment
appears at (E(map) = $3.95, E(mep) = $4.41).

They also conduct three h-valuations, an AB valuation for (M = $4,p = 0.4) and CD
valuations for (M = $4,p = 0.4,7 = 0.5) and (M = $4,p = 0.4,r = 0.25). We treat these as
two paired h-valuation experiments. The average valuations provided by the authors for the
three valuations are $9.77, $9.95, and $10.22. Using the same transformation as we do for
the paired h-valuations in Dean and Ortoleva (2019), these two experiments appear in panel
B at the locations (E(map) = $4, E(mep) = $3.93) and (E(mag) = $4, E(mep) = $3.82).



(5) Chapman et al. (2022) conduct two paired h-valuations, using (M = $2.50,p = 0.8,r = 0.25)
and (M = $4,p = 0.75,r = 0.2). The paper does not report any statistics that would permit
us to calculate the four average valuations. We contacted the authors but thus far they have

not provided us with any additional information.

(6) Agranov and Ortoleva (forthcoming) conduct two paired h-valuations, using (M = $14,p =
0.8,7 = 0.25) and (M = $16,p = 0.8, = 0.25). Because the authors use these valuations
primarily as control variables while studying something else, the paper does not report any
statistics for these valuations. We contacted the authors but thus far they have not provided

us with any additional information.

B.4 Development for h-Tasks

In Section I.C, we fix (H,p,r) and focus on behavior as a function of M, which links directly to
our m-tasks. Here, we revisit some of the analysis from Section I.C when we instead fix (M, p,r)
and focus on behavior as a function of H, which links directly to our h-tasks. Note that, while we
use some of the same notation below as we use in Section 1.C, we are now referring to different
(though analogous) objects.

Assuming underlying preferences are monotonic and continuous, for each (M, p,r) a person will
have an underlying pair of indifference points (h% 5, h¢p) such that their underlying (noise-free)

preferences satisfy:
e Prefer A= (M, 1) over B = (H,p) if and only if H < h%j 5, and
o Prefer C = (M,r) over D = (H,rp) if and only if H < h}.p.

Here, EU implies h¥ 5 = h{p, whereas a CRP would mean h%; > h{, (an individual would
prefer combination AD for any H € (h{p,h%5)), and an RCRP would mean h%z < hfp. To
parallel the development in the main text, where Am* > 0 reflects a CRP, we define Ah* =
h% g — hép so that Ah* > 0 reflects a CRP while Ah* < 0 reflects an RCRP.

Given these underlying preferences, Assumption 1h is the analogue for Assumption 1:

Assumption 1h: Impact of Noise on Choices and Valuations

A person’s realized indifference points (hap, hcp) are hap = I'(hY 5,e4a8) and hep = I'(hEp, ecp),
where (e4p,ecp) are noise draws from a continuous joint distribution with convex support,

and where I is increasing in both arguments and has I'(h,0) = h for all h. Then:

e In an AB choice task, the person chooses A = (M, 1) over B = (H,p) if and only if
H < hap = F(th,EAB),



e In a CD choice task, the person chooses C = (M,r) over D = (H,rp) if and only if
H < hgp = F(hé«D,ECD),
e In an AB valuation task, the person states valuation hap = I'(h% 5,€aB), and

e In a CD valuation task, the person states valuation hcp = I'(hip,ecp)-

Assumptions 2ah and 2bh are the analogues for Assumptions 2a and 2b:
Assumption 2ah: I'(h,e) = h + ¢, ecp 2 ke ap for some k > 0, and E(eap) = E(ecp) = 0.

Assumption 2bh: I'(h, ) is potentially nonlinear in h and €, but ecp 4 ke ap for some k > 0,

and €4p is symmetric about 0.
In EU and PT, Assumptions 2ah and 2bh apply under the same assumptions as Assumptions

2a and 2b:

Example 1h: Expected Utility and Prospect Theory

If a person evaluates a lottery (z, ¢) with > 0 as w(q)u(x), the underlying indifference points

satisfy
T N N Crid)
ROUOD) = wpuhen) = b= (S

One way to incorporate noise is by assuming that hap = hjz +eap and hep = hp +ecp.
This formulation satisfies Assumption 2ah as long as ecp 4 ke ap for some k > 0 and E(eap) =
E(ecp) = 0.

Alternatively, one might incorporate additive utility noise by assuming that the realized in-

difference points satisfy

u(M) = w(p)u(hap) + ean < hag = u™" (w(hp) — eap/m(p))
m(r)u(M) = 7(rp)u(hcp) + €cp = hep = u™t (u(hip) — ecp/m(rp))

where e4p and ecp reflect additive utility noise.®> This formulation fits Assumption 1h with
L'(h,e) = u Y (u(h)+¢), eap = —eap/n(p), and ecp = —ecp/m(rp). This formulation further
satisfies Assumption 2bh as long as € 45 is symmetric about 0 and ecp 2 1le g for some k' > 0.

Finally, EU with additive utility noise that is i.i.d. across the AB and C'D choice tasks implies

ecp = €AB/T.

3The latter equations use u(M)/7(p) = u(h%z) and 7(r)u(M)/x(rp) = uw(hEp).



Because this formulation is exactly parallel to our formulation for m-tasks, analogues for Propo-
sitions 1 and 2 and for Corollary 1 follow straightforwardly, and so are omitted.

Finally, consider analogues to the predictions for stage 2 behavior from Section IV.A. As in
the text, consider the case of Assumption 2ah where a person with underlying indifference values
(h 5, hé&p) would choose A over B when H < h¥jp + e4p and would choose C' over D when
H < hi.p +ecp, where ecp 2 fe Ap- For this case, the probability of making CRE choices (A and
D) minus the probability of making RCRE choices (B and C) is

CRE — RCRE =Pr(A) — Pr(C) = Pr(—eap < (hljg — H)) — Pr (—sAB < %(h*CD - H)) .

Defining ¥ = (h%,, — H)/k, and substituting h* = (h¥ 5 + h¥)/2 and Ah* = b5 — hE ), We can

rewrite this as:

CRE — RCRE =Pr <—5AB <W¥+0.5 (1 + ;) Ah* + (1 — ]1) (h* — H)) —Pr(—eap < V).
This equation is analogous to equation 3 from Section IV.A. It yields similar intuitions, and could
also be used to construct a figure analogous to Figure 7.

For some of our empirical analysis in Section IV, we increase power by (i) combining data across
different values for p and r and (ii) combining data for both h-tasks and m-tasks. Because these
differences in parameters and the type of task may impact the extent of differential noise (i.e., k),
we make a correction to the scaled value difference and the scaled distance to indifference. To do so
in a disciplined way, we use the correction that would be valid under EU with additive i.i.d. utility
noise.* If we let € reflect the additive utility noise, then for the m-tasks e4p 4 e and ecp 4 €/r (see
Example 1), which motivates using 0.5(1 +7)Am for the scaled value difference and (1 —7)(M —m)
for the scaled distance to indifference (as discussed in Section IV.A).

For the h-tasks, and using the same € reflect the additive utility noise, we have instead that

eap s — e/p and ecp 4 _ ¢/(rp) (see Example 1h). We can then define ¥’ = rp(hf,, — H) write:

CRE — RCRE = PI‘(*&AB < hjZlB — H) — PI“(*&CD < hsz — H)
=Pr(e< V' +0.5(1+r)pAh* + (1 —r)p(h* — H)) — Pr(eap < V).

This formulation thus suggests using 0.5(1 + 7)pAh* for the scaled value difference, and using
(1 —r)p(h* — H) for the scaled difference to indifference.

4We reiterate the point from footnote 38 that this correction is not perfect because our data are inconsistent with
EU with additive i.i.d. utility noise; nonetheless, we use that case to impose some discipline on what we use for this
correction. See also our discussion in Appendix B.7
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B.5 Reyvisiting Choices versus Valuations

In this section, we provide a stylized example, within the context of our specific experimental
tasks, the bias in paired choice tasks and how paired valuation tasks are immune to that bias.
Consider for simplicity an expected value maximizer who chooses lottery A over lottery B when
EV(A) — EV(B) > eap, and chooses lottery C over lottery D when EV(C) — EV(D) > ecp.
Suppose further that e4p and ecp are i.i.d., and specifically each takes on the values 1 and —1
with equal probability.

Table B.1 illustrates how this person would behave for six rows in an experimental task with
H = $29 (we use H = $29 instead of H = $30 as in our study to eliminate indifference), p = 0.5,
and r = 0.5. Columns (2) and (3) present six paired choice tasks (one in each row) for M varying
from $12 to $17. Column (4) presents the expected-value differences for each row. Columns
(5)-(8) present combined behavior for the paired choice task in each row as a function of the
four possible realizations of (eap,ecp). Based on these, column (9) presents the prediction for
CRE — RCRE = Pr(A) — Pr(C) for the paired choice task in each row if it were presented in an
isolated paired choice task. This last column reveals that, despite there being no CRP or RCRP, if
we happen to choose experimental parameters such that the participant moderately prefers A and
(C—as in row 5—then we will observe a CRE, and if we happen to choose experimental parameters
such that the participant moderately prefers B and D—as in row 2—then we will observe an RCRE.

The bottom panel of the Table B.1 illustrates how valuations can solve the problem. Applying
our approach of taking the average value of M at the switching rows to be our measure of the
realized indifference point, the table presents for each of the four possible realizations of (esp, €cp)
the measured indifference points m 4 g and m¢p along with Am = mecp—mag. The table illustrates
that, while the noise leads to positive and negative realizations of Am, these realizations average
out to zero.

This stylized example highlights how a full understanding of behavior requires observing out-
comes across all six rows of the table. However, the paired-choice-task approach in the prior liter-
ature typically studies behavior from only one row, thus yielding only a partial view of behavior.
Moreover, as discussed in Section 1.D, the prior literature has focused on a selected set of param-
eter configurations that are more like row 5 in Table B.1. In contrast, our paired-valuation-task

approach reveals a more complete view of behavior.
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Table B.1: Stylized Example With Additive Noise

€AB
€CD
Ro Lottery A Lottery B EU(A)—FEU(B) | -1 | —1 1 1 | Pr(A)—
V1 (Lottery €) (Lottery D) | EU(C)—EU(D) | -1 | 1 | =1 | 1 | Pr(C)
100% chance $12 | 50% chance $29 —2.50
1 (50% chance $12) | (25% chance $29) —1.25 BD| BD | BD | BD 0
100% chance $13 | 50% chance $29 —1.50 1
2 (50% chance $13) | (25% chance $29) —0.75 BC | BD | BC | BD 2
100% chance $14 | 50% chance $29 —0.50
3 (50% chance $14) | (25% chance $29) —0.25 AC | AD | BC| BD 0
100% chance $15 | 50% chance $29 0.50
4 (50% chance $15) | (25% chance $29) 0.25 AC | AD | BC | BD 0
100% chance $16 | 50% chance $29 1.50 1
g (50% chance $16) | (25% chance $29) 0.75 AC | AD 1 AC | AD 2
100% chance $17 | 50% chance $29 2.50
0 (50% chance $17) | (25% chance $29) 1.25 AC | AC 1 AC | AC 0
Measured map | 13.5 | 13.5 | 15.5 | 15.5
Measured mgp | 12.5 | 16.5 | 12.5 | 16.5
Measured Am | —1 3 -3 1

Note: The pair of choices in row 5 will exhibit a CRE, with Pr(A) > Pr(C).

exhibit an RCRE, with Pr(A) < Pr(C).

B.6 Impact of Distance to Indifference Without Noise

Our analysis in Section IV focuses on the impact of distance to indifference in the presence of choice
noise, where we present theoretical predictions in Figure 7, and we plot empirical relationships in
Figures 8 and 9 that confirm those theoretical predictions. In this section, we support the claims

made in footnote 37 that predictions for Figures 8 and 9 would be very different in the absence of

The pair of choices in row 2 will

choice noise, that is, when all variation in the data is due to heterogeneity in preferences.

(mig +m&p)/2 and Am* = mE, — m¥g. The development below assumes that m* and Am*
are independently distributed, motivated by the fact that we observe limited empirical correlations
between the m’s and Am’s elicited in stage 1 of our experiment—across the 15 combinations of
(p,), these correlations range from —0.04 to 0.10, with a mean of 0.04. Hence, we let @z (

denote the population distribution of m*, and Qam,*(Am*) denote the population distribution of

Suppose that there is heterogeneity in (m? 5, m¢ ), where we focus on heterogeneity in m* =

Am*, and assume Q7+ and Qa,* are independent of each other.

with a CRP) as a function of an offered M at stage 2. In the absence of noise, this individual will
exhibit a CRE if m% 5 < M < m{p; otherwise, they will exhibit neither a CRE nor an RCRE. This

Consider first the behavior of an individual characterized by (m* g, m& ) with Am* > 0 (i.e.,

12
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condition can be rewritten as —Am* < 2(M — m*) < Am*, or, equivalently, Am* > 2|M — m*|.
Notice the symmetry around a zero distance to indifference: Whether the person exhibits a CRE
does not depend on whether M — m* is positive or negative; all that matters is whether the
magnitude of Am* is larger than the magnitude of 2(M — m*).

Next consider the behavior of an individual characterized by (m g, m§ ) with Am* <0 (i.e.,
with an RCRP). By an analogous logic, in the absence of noise, the person will exhibit an RCRE
when Am* < 2(M — m*) < —Am*, or, equivalently, Am* < —2|M — m*|. Again, note the
symmetry around a zero distance to indifference. Moreover, note the symmetry around a zero
value difference: For a fixed distance to indifference, a person with Am* = § > 0 exhibits a CRE
if and only if a person with Am* = —§ exhibits an RCRE.

Now consider the behavior of a population as a function of the distance to indifference M — m*,
that is, a prediction to compare to Figure 8. Because this essentially controls for m*, and because
the distribution of Am™* is independent of m*, the distribution Q.+ of m* is irrelevant for this
prediction. Given an M —m™* = d, anyone with Am™* > 2|d| will exhibit a CRE while anyone with
Am* < —2|d| will exhibit an RCRE, and thus CRE — RCRE = (1 — Qam=(2]d])) — Qam= (—2]d]).
Simplifying, the prediction is

CRE — RCRE =1 — Qapmx(2d) — Qams (—2d) = C(d).

Hence, predicted behavior for this population depends on the nature of the distribution QA .
Various possibilities can arise; but we highlight two points. First, if the distribution Qay,= is
symmetric around zero—so that 1 — Qam*(2d) = Qam*(—2d) for all d—then C(d) = 0 for all d.
Hence, if all variation in the data is due to heterogeneity in preferences, then CRE — RCRFE can
depend on the distance to indifference only if the distribution of Am™* is asymmetric, which is not
what we see in Figure 6(B). Second, even when Qa,* is asymmetric, C(d) must still be symmetric
around d = 0. In other words, if all variation in the data is due to heterogeneity in preferences,
then whatever CRE — RC RE we see for some positive value of M —m™*, we ought to see the same
CRFE — RCRE for that same negative value of M — m*. This is not what we see in Figure 8.

Finally, consider the behavior of a population as a function of the average distance to indifference
M — E(m™*), that is, a prediction to compare to Figure 9. Define z = m* — E(m*), H(z) =
Qmx (E(m*) +2), and assume that distribution H has a PDF h. Suppose M — E(m*) = d, in which
case all people with m* have M —m* = (d + E(m*)) — (z + E(m*)) = d — z, and thus that group
will have CRE — RCRE = C(d — z). Integrating over z, the overall population will have

o6}

CRE — RCRE = C(d — 2)h(z)dz = C(d).

zZ=—00

If we then assume Q* is symmetric around m* = FE(m™*), which implies H is symmetric around
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z = 0, we have

where the second equality uses a change of variables with 2/ = —z and the third equality uses
C(z) = C(—z) and h(—2") = h(2’') given the symmetry of H around z = 0. It follows that, if
all variation in the data is due to heterogeneity in preferences, and if the distribution of m™* is
symmetric about m* = E(m*), then whatever CRE — RCRE we see for some positive value of
M — E(m™*), we ought to see the same CRE — RCRE for that same negative value of M — E(m*).
This is not what we see in Figure 9.

Hence, under the conditions described above, a model in which all variation in the data is due to
heterogeneity in preferences would generate very different predictions from what we see in Figures
8 and 9. Of course, we make some simplifying assumptions above, most notably the assumption
that the distributions of m* and Am* are independent (used for predictions for Figure 8), and
the additional assumption that the distribution of m* is symmetric around m* = E(m™*) (used for
predictions for Figure 9). It is possible that, with the appropriate assumptions about correlated
heterogeneity and asymmetric distributions, one might be able to generate predictions closer to

Figures 8 and 9.

B.7 Assessment of Corrected Regressors in Tables 5, 6, and D.10

In Table 5, to increase statistical power, we combine data for the three different values of r. However,
we need to correct for the fact that » may impact the magnitude of the coefficients on Am and
M — m (via its impact on k in equation 3). Motivated by the EU case where k = 1/r, we use the
corrected regressors 0.5(1 + r)Am and (1 — r)(M — m).

As we note in footnote 38, this correction is not perfect. To assess the impact of this correction,
Appendix Table B.2 reports the equivalent of Column (3) of Table 5 broken out by r. Panel A
merely uses the regressors Am and M — m. The qualitative results are much the same as in Table
5—both regressors have a significant positive impact for each r, except for M — m when r = 0.6.
Moreover, consistent with the need to correct for r and the directional effects in equation 3, the
coefficient on Am increases with r while the coefficient on M — m decreases with r.

Panel B instead uses our corrected regressors, still running separate regressions for each r. Here,
the estimated coefficients are more stable in magnitude across r, and they are similar to those in
column (3) of Table 5 but with larger standard errors. On net, then, it appears that the corrected
regressors perform as intended: They increase precision without changing the qualitative results.

We separately perform analogous analyses for Appendix Table D.10 and Table 6 (although we

do not report the results here). For the former, which is the analogue of Table 5 for h choice tasks,
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this analysis reaches much the same conclusions. For the latter, which is the analogue of Table 5 for

the experiment-level analysis, running separate regressions for each r leads to estimates with large

standard errors due to the low sample sizes (N = 40 for each r); hence, while a similar message

seems to emerge, we are cautious in concluding too much.

Table B.2: Predicting Individual-Level CRE — RCRE Separately by r

(1) (2) 3)

Outcome: CRE — RCRE € {—1,0,1}
r=0.2 r=04 r = 0.6

Value Difference: Am

Distance to Indifference: M — m

Scaled Value Difference: %Am
Scaled Distance to Indifference: (1 — 7)(M — m)
Outcome Mean

Individuals
Observations

Panel A: Unscaled Estimates

0.64 0.78 0.90
(0.18) (0.15) (0.19)
0.76 0.61 0.06
(0.23) (0.22) (0.23)

Panel B: Scaled Estimates

1.06 1.11 1.12
(0.31) (0.21) (0.24)
0.90 0.89 0.41
(0.26) (0.32) (0.49)
3.02 3.76 1.14
298 303 299
1,490 1,515 1,495

Note: OLS regressions using individual-level m-task data with the dependent variable CRE — RCRE € {—1,0,1}
separately for each common ratio r € {0.2,0.4,0.6}. Panel A presents estimates using the unscaled regressors, and
panel B presents estimates using the scaled regressors. All specifications include p fixed effects, as well as controls
for gender, education, age, language, student status, employment, and the number of previous Prolific approvals.
All numbers are reported in percentage points; individual-cluster-robust standard errors in parentheses.
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B.8 Owur Experiments and Prior Experiments

In Section IV.D, we compare behavior in our stage 2 experiments to that observed in the prior
literature by developing a measure of whether an experiment is more representative of prior studies
or more representative of our study based on the experimenter-chosen values for p, r, and M /(pH).
This section provides details for this analysis.

We first create a combined data set of 263 observations consisting of our own and prior exper-
iments. We then regress an indicator for an observation coming from a prior study on p, r, and
M /(pH). Based on inspection, we expect a nonlinear impact of M /(pH) because the vast majority
of prior experiments have M /(pH) € [0.75,1] while our experiments have more representation for
M/(pH) < 0.75 and M /(pH) > 1. Hence, letting y; be a dummy variable for whether experiment

1 comes from a prior study, we run a logistic regression based on the following specification:

yr = Bo+ Pipi + Pori + B3 [M/(pH); € [0.75,1]] + B4l [M/(pH); > 1] + &;
o 1 ifyf>0
vi 0 otherwise

Panel A of Table B.3 presents the estimates. An experiment is more likely to come from a prior
study if it has a larger p, a smaller 7, or an M /(pH) € [0.75,1]. Using the estimated coefficients
from this regression, we can assign to each experiment a predicted likelihood that it comes from a

prior study. Specifically, the predicted likelihood for experiment i is
Pr(—¢; < Bo + Bipi + Bori + B3 [M/(pH); € [0.75,1]] + Ba1 [M/(pH); > 1])

using a standard logistic distribution for ¢;. This predicted likelihood indicates how representative
an experiment is of prior studies. Importantly, this predicted likelihood depends on only an exper-
iment’s experimenter-chosen values for p, r, and M /(pH), and is independent of the experiment’s
observed realization for CRE — RCRE.

We next compare experiments based on whether they are more representative of prior studies
(predicted likelihood larger than 0.50) or more representative of our study (predicted likelihood
smaller than 0.50). Panel B of Table B.3 reports the sample-weighted average CRE — RCRE
for experiments grouped by different predicted likelihoods and by experiment type. As discussed
in Section IV.D, among the 143 prior experiments, 112 are more representative of prior studies
and have an average CRE — RCRFE of 25.8 percent, while the other 31 have an average of 4.5
percent. Among our 120 experiments, 40 are more representative of prior studies and have an
average CRE — RCRE of 8.4 percent, while the other 80 have an average of —0.1 percent. In other
words, when we (or prior studies) use experimental parameters that are more representative of prior
studies, we find more CRE; in contrast, when we (or prior studies) use experimental parameters

that are less representative of prior studies, we find much less CRE.
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Table B.3: Comparing Prior Experiments to Our Experiments Using Predicted Likelihoods

Panel A: Logistic Regression
(DV: Prior Study Indicator)

able: 1[M/(pH)
Variable: D T e [0.75,1]] 1[M/(pH) > 1] Constant
Coefficient 3.516 —1.463 1.744 0.583 —2.527
Standard Error (0.738) (0.832) (0.327) (0.676) (0.694)

Panel B: CRE — RCRFE by Predicted Likelihood

More Representative of Prior Studies More Representative of Our Study
(Predicted Likelihood > 0.50) (Predicted Likelihood < 0.50)
N CRE — RCRE N CRE — RCRE
Prior Literature 112 24.7% Prior Literature 31 4.5%
Our Experiments 40 8.4% Our Experiments 80 —0.1%

Note: Panel A reports results from logistic regression using the specification in the text. Panel B presents the
number of experiments and the average CRE — RCRE for the subset of experiments that are more representative
of prior studies or our study based on the predicted likelihoods. All average CRE — RCRE are calculated by

weighting by the number of observations in the experiments.
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C Screenshots from the Online Experiment

C.1 Screenshots from Stage 1: Valuation Tasks

C.1.1 m-Valuation Tasks

Decision 6 of 40: Please complete the decision problem below.

OPTION A: OPTION B:

80% CHANCE OF $0, OR
20% CHANCE OF $30

100% CHANCE OF $0

80% CHANCE OF $0, OR

20% CHANCE OF $30 100% CHANCE OF $1

80% CHANCE OF $0, OR

20% CHANCE OF $30 100% CHANCE OF $2

80% CHANCE OF $0, OR

20% CHANCE OF $30 100% CHANCE OF $3

80% CHANCE OF $0, OR

20% CHANCE OF $30 100% CHANCE OF $27

80% CHANCE OF $0, OR

20% CHANCE OF $30 100% CHANCE OF $28

80% CHANCE OF $0, OR

20% CHANCE OF $30 100% CHANCE OF $29

80% CHANCE OF $0, OR

20% CHANCE OF $30 100% CHANCE OF $30

Figure C.1: Example Price List for Stage 1 AB m-Valuation Task with p = 0.2
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OPTION A: OPTION B:

OR 100% CHANCE OF $0
OR 100% CHANCE OF $1
OR 100% CHANCE OF $2
OR 100% CHANCE OF $3
OR 100% CHANCE OF $4
OR 100% CHANCE OF $5

80% CHANCE OF $0, OR
20% CHANCE OF $30

80% CHANCE OF $0, OR
20% CHANCE OF $30

80% CHANCE OF $0, OR
20% CHANCE OF $30

80% CHANCE OF $0, OR
20% CHANCE OF $30

80% CHANCE OF $0, OR
20% CHANCE OF $30

80% CHANCE OF $0, OR
20% CHANCE OF $30

Figure C.2: Example Price List for Stage 1 AB m-Valuation Task with p = 0.2 (with example
completion)
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OPTION A:

OPTION B:

88% CHANCE OF $0,
12% CHANCE OF $30

OR

40% CHANCE OF $0
60% CHANCE OF $0

88% CHANCE OF $0,
12% CHANCE OF $30

OR

40% CHANCE OF $0
60% CHANCE OF $1

88% CHANCE OF $0,
12% CHANCE OF $30

OR

40% CHANCE OF $0
60% CHANCE OF $2

88% CHANCE OF $0,
12% CHANCE OF $30

OR

40% CHANCE OF $0
60% CHANCE OF $3

88% CHANCE OF $0,
12% CHANCE OF $30

OR

40% CHANCE OF $0
60% CHANCE OF $4

88% CHANCE OF $0,
12% CHANCE OF $30

OR

40% CHANCE OF $0
60% CHANCE OF $27

88% CHANCE OF $0,
12% CHANCE OF $30

OR

40% CHANCE OF $0
60% CHANCE OF $28

88% CHANCE OF $0,
12% CHANCE OF $30

OR

40% CHANCE OF $0
60% CHANCE OF $29

88% CHANCE OF $0,
12% CHANCE OF $30

OR

40% CHANCE OF $0
60% CHANCE OF $30

20

Figure C.3: Example Price List for Stage 1 C'D m-Valuation Task with p = 0.2 and r = 0.6




C.1.2 h-Valuation Tasks

OPTION A: OPTION B:
100% CHANCE OF $6 OR S CHANGE OF 5;%
100% CHANCE OF $6 OR 82%22 CHANGE OF 5;9,
100% CHANCE OF $6 OR g‘(’)‘ZZ CHANGE OF 5;%’
100% CHANCE OF $6 OR g%‘f;o CHANCE OF 5;%’
100% CHANCE OF $6 OR gg;/: SHANCE OF ;*25
100% CHANCE OF $6 OR S0 SHANCE SF 3;’3
100% CHANCE OF $6 OR gg;f g::"jgg SE :gé
100% CHANCE OF $6 OR SO0 SHANCE OF fé’g

Figure C.4: Example Price List for Stage 1 AB h-Valuation Task with p = 0.2
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OPTION A: OPTION B:

40% CHANCE OF $0 OR 88% CHANCE OF $0,
60% CHANCE OF $6 12% CHANCE OF $6
40% CHANCE OF $0 OR 88% CHANCE OF $0,
60% CHANCE OF $6 12% CHANCE OF $7
40% CHANCE OF $0 OR 88% CHANCE OF $0,
60% CHANCE OF $6 12% CHANCE OF $8
40% CHANCE OF $0 OR 88% CHANCE OF $0,
60% CHANCE OF $6 12% CHANCE OF $9
40% CHANCE OF $0 OR 88% CHANCE OF $0,
60% CHANCE OF $6 12% CHANCE OF $33
40% CHANCE OF $0 OR 88% CHANCE OF $0,
60% CHANCE OF $6 12% CHANCE OF $34
40% CHANCE OF $0 OR 88% CHANCE OF $0,
60% CHANCE OF $6 12% CHANCE OF $35
40% CHANCE OF $0 OR 88% CHANCE OF $0,
60% CHANCE OF $6 12% CHANCE OF $36

Figure C.5: Example Price List for Stage 1 C'D h-Valuation Task with p = 0.2 and r = 0.6
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C.2 Screenshots from Stage 2: Binary-Choice Tasks

C.2.1 m-Choice Tasks

Decision 36 of 40: Please choose your preferred option.

Option A Option B
80% chance of 30  100% chance of $4

20% chance of $30

Option A Option B

Figure C.6: Example Stage 2 Binary AB(M) Choice Task with p = 0.2 and M = $4

Decision 33 of 40: Please choose your preferred option.

Option A Option B
40% chance of 0  88% chance of $0

60% chance of $4 12% chance of $30

Option A Option B

Figure C.7: Example Stage 2 Binary CD(M) Choice Task with p = 0.2, r = 0.6, and M = $4
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C.2.2 h-Choice Tasks

Decision 28 of 40: Please choose your preferred option.

Option A Option B
100% chance of 36  80% chance of $0

20% chance of $20

Option A Option B

Figure C.8: Example Stage 2 Binary AB(H) Choice Task with p = 0.2 and H = $20

Decision 28 of 40: Please choose your preferred option.

Option A Option B
100% chance of $6  80% chance of 50

20% chance of $20

Figure C.9: Example Stage 2 Binary AB(H) Choice Task with p = 0.2, and H = $20 (with example
completion)
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Decision 29 of 40: Please choose your preferred option.

Option A Option B
40% chance of $0  88% chance of $0

60% chance of $6 12% chance of $20

Option A Option B

Figure C.10: Example Stage 2 Binary CD(H) Choice Task with p = 0.2, r = 0.6, and H = $20
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C.3 Screenshots from Comprehension Checks and Visual Puzzle Task

Quiz Question #1:

Imagine a person who values the lottery shown in Option A below at exactly $24.50.
That is, he would rather have the lottery than any sure amount less than $24.50, but
would rather have the sure amount for any amount greater than $24.50.

How would this person fill out the list below?

OPTION A: OPTION B:

25% CHANCE OF $0,
75% CHANCE OF $30 OR 100% CHANCE OF $0

25% CHANCE OF $0,
75% CHANCE OF $30 OR 100% CHANCE OF $1

25% CHANCE OF $0,
75% CHANCE OF $30 OR 100% CHANCE OF $2

25% CHANCE OF $0,
75% CHANCE OF $30 OR 100% CHANCE OF $28

25% CHANCE OF $0,
75% CHANCE OF $30 OR 100% CHANCE OF $29

25% CHANCE OF $0,
75% CHANCE OF $30 OR 100% CHANCE OF $30

Figure C.11: Incentivized Comprehension Check 1: Multiple Price List
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Quiz Question #2:
Imagine a person who filled out the list like shown below.

OR 50% CHANCE OF $0
50% CHANCE OF $10
OR 50% CHANCE OF $0
50% CHANCE OF $11
OR 50% CHANCE OF $0
50% CHANCE OF $12
OR 50% CHANCE OF $0
50% CHANCE OF $13
OR 50% CHANCE OF $0
50% CHANCE OF $14
50% CHANCE OF $0
| 50%CHANCEOFs$1s |
60% CHANCE OF $0,
40% CHANCE OF $30
60% CHANCE OF $0, OR
40% CHANCE OF $30

AAAl AliANIAE A AA I_

Given these responses in the list, what would this person choose in the single decision
below?

50% chance of $0 60% chance of $0
50% chance of $27 40% chance of $30

Figure C.12: Incentivized Comprehension Check 2: Binary-Choice Task
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Just for fun to take a little break: Can you spot the animal camouflaged below? Please
click on the image where you think the animal is.

Figure C.13: Example: Camouflaged Animal Task
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D Supplementary Figures and Tables

Table D.1: Participant Demographics

Full r=02 r=04 r=06
Sample

Number of Participants 900 298 303 299
Time Taken (in minutes) 27.3 27.3 27.8 26.9
Age 22.4 22.5 22.2 22.5
Prolific Score 99.9 99.9 99.9 99.9
Number of Approvals 32.2 30.3 34.5 31.9
Female 50.0 50.7 49.8 49.5
Current Student 64.8 61.1 71.6 61.5
College Degree 49.3 48.0 49.2 50.8
Working (full- or part-time) 44.2 45.0 40.9 46.8
English First Language 52.0 48.7 49.5 57.9
Attention Checks

Incentive Question Correct 92.3 93.3 92.1 91.6

Passed Attention Check 83.7 82.2 85.1 83.6
Comprehension Questions

MPL Question Correct 83.9 81.5 84.8 85.3

Bin Question Correct 86.2 85.9 86.1 86.6

Both Questions Correct 74.0 70.8 75.2 75.9
Current Residency

United States 51.4 47.7 49.2 57.5

United Kingdom 6.3 7.0 5.9 6.0

Portugal 22.1 22.1 244 19.7

Spain 5.4 6.4 4.0 6.0

Germany 4.7 5.4 4.6 4.0

Note: Participant demographics for all 900 participants. Each participant assigned to a single value of 7.

29



Table D.2: Summary Statistics: m-Valuations

Percentile
P Mean SD 10th 25th 50th 75th 90th
Panel A: r = 0.2 (298 participants)
map 0.1 8.86 6.56 0.50 4.50 9.50 10.50 15.50
mep 0.1 7.31 6.67 0.50 2.50 5.50 9.50 15.50
map 0.2 10.75 6.59 2.50 5.50 9.50 14.50 19.50
mep 0.2 9.46 7.05 0.50 4.50 9.50 11.50 19.50
map 0.5 15.95 6.34 9.50 13.50 15.00 19.50 24.50
mep 0.5 15.99 7.01 7.50 10.50 15.50 20.50 24.50
map 0.8 19.54 7.06 9.50 15.50 19.50 24.50 29.50
mep 0.8 20.55 7.46 9.50 15.50 22.50 25.50 29.50
map 0.9 22.78 7.32 10.50 19.50 24.50 29.50 29.50
mep 0.9 21.31 8.00 9.50 14.50 24.50 28.50 29.50
Panel B: r = 0.4 (303 participants)

map 0.1 7.29 5.83 0.50 3.50 5.50 9.50 14.50
mep 0.1 6.66 6.15 0.50 2.50 4.50 9.50 14.50
map 0.2 9.33 6.12 0.50 4.50 9.50 13.50 15.50
mep 0.2 8.20 5.88 0.50 4.50 7.50 10.50 15.50
map 0.5 14.48 6.37 6.50 10.50 14.50 19.50 20.50
mep 0.5 13.27 6.71 4.50 9.50 14.50 15.50 20.50
map 0.8 19.22 7.43 9.50 14.50 19.50 24.50 29.50
mep 0.8 18.63 741 9.50 14.50 19.50 24.50 27.50
map 0.9 21.55 7.59 9.50 19.50 24.50 26.50 29.50
mep 0.9 21.39 8.10 9.50 18.50 24.50 27.50 29.50

Panel C: r = 0.6 (299 participants)

maARB 0.1 6.76 5.46 0.50 2.50 5.50 9.50 14.50
mep 0.1 6.27 5.61 0.50 2.50 4.50 9.50 12.50
maARB 0.2 8.57 5.59 0.50 4.50 9.50 10.50 15.50
mep 0.2 8.70 5.99 0.50 4.50 9.50 10.50 15.50
mARB 0.5 14.36 6.37 5.50 10.50 14.50 18.50 20.50
mep 0.5 12.32 6.25 4.50 9.50 13.50 15.50 19.50
MARB 0.8 19.36 7.12 9.50 14.50 19.50 24.50 29.50
mep 0.8 18.11 7.05 9.50 13.50 19.50 23.50 25.50
MARB 0.9 23.05 6.94 11.50 19.50 24.50 28.50 29.50
mep 0.9 21.01 7.04 10.50 15.50 22.50 26.50 29.50

Note: Summary statistics for all 30 m-valuations. Each participant was assigned a single r, and completed all 10
m-valuations for that value of r. Each valuation is equal to the average value of M at the participant’s switching
rows in a multiple-price list (MPL). Each MPL permits the valuations to range from —0.50 to 30.50.
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Table D.3: Adjusting the Sign Test for Ties (m-Valuation Tasks)

(1) (2) (3) (4) (5) (6) (7)
Number of Cases Sign Tests
» Am >0 Am — 0 Am <0 Default  Equal Split  Prop. Split
(CRE) (RCRE) (p-value) (p-value) (p-value)
Panel A: r = 0.2 (298 participants)

0.1 79 75 144 0.000 0.000 0.000
0.2 80 73 145 0.000 0.000 0.000
0.5 123 60 115 0.650 0.685 0.524
0.8 140 54 104 0.025 0.042 0.013
0.9 127 42 129 0.950 0.954 0.862

Panel B: r = 0.4 (303 participants)

0.1 103 71 129 0.101 0.135 0.051
0.2 97 65 141 0.005 0.011 0.001
0.5 104 62 137 0.039 0.066 0.016
0.8 127 41 135 0.665 0.646 0.566
0.9 124 52 127 0.900 0.909 0.818

Panel C: r = 0.6 (299 participants)

0.1 94 90 115 0.166 0.247 0.083
0.2 111 84 104 0.682 0.729 0.563
0.5 89 65 145 0.000 0.001 0.000
0.8 113 o7 129 0.335 0.355 0.247
0.9 79 60 160 0.000 0.000 0.000

Note: Columns (2)-(4) report raw frequencies of Am > 0, Am = 0, and Am < 0 (identical to those
reported in columns (4)-(6) in Table 3). Column (5) reports the p-values for the default sign tests
(identical to those reported in column (7) in Table 3) that exclude all ties (instances of Am = 0). The
adjusted sign tests in column (6) split ties equally between Am > 0 and Am < 0. The adjusted sign
tests in column (7) split ties in proportion to the observed share of Am > 0 and Am < 0.
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Table D.4: Predictions for Am under PT Versus Observed Am in Data

(1) (2) (3) (4)
Current Estimates:
Lower Point Upper
Bound Estimate Bound Data

Panel A: r =10.2

p=20.1 4.07 4.76 5.45 —1.55
p=202 5.66 6.40 7.15 —1.29
p=20.5 7.82 8.54 9.26 0.04
p=2038 7.20 7.84 8.48 1.00
p=0.9 5.78 6.36 6.94 —1.47

Panel B: »r =04

p=0.1 4.02 4.69 5.36 —0.63
p=202 5.62 6.34 7.06 —1.14
p=0.5 7.94 8.63 9.31 —1.22
p=2038 7.56 8.19 8.82 —0.60
p=0.9 6.17 6.75 7.33 —0.16

Panel C: r = 0.6

p=20.1 2.66 3.15 3.64 —0.49

p=20.2 3.89 4.45 5.01 0.14

p=20.5 5.89 6.49 7.09 —2.05

p =028 5.89 6.47 7.05 —1.26

p=209 4.84 5.37 5.90 —2.03
Note: Columns (1)-(4) present predictions for Am* = m&, — m¥; under a PT model with 7(q) =

¢"/[a" + (1 —¢)]"" and v(z) = 2. Columns (1)-(3) use parameter estimates based on our stage 1 map-
valuations reported in Appendix Table E.1, with separate estimates for each . Column (2) reports predictions
using the point estimates, while columns (1) and (3) report lower and upper bounds of the 95 percent confi-
dence interval computed using the delta method. Column (4) reports mean Am values in our data from the
m-valuation tasks.
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Table D.5: Summary Statistics: h-Valuations

Percentile

P Mean SD 10th 25th 50th 75th 90th

Panel A: r = 0.2 (298 participants)

hap 0.1 19.99 9.50 7.50 10.50 19.50 29.50 32.50
hcp 0.1 21.66 9.72 9.50 12.50 23.50 30.50 33.50
hap 0.2 22.54 8.26 11.50 15.50 21.50 29.50 34.50
hcp 0.2 24.49 8.78 12.50 18.50 25.50 30.50 36.50
hap 0.5 30.59 8.26 19.50 24.50 29.50 35.50 44.50
hcp 0.5 28.95 7.68 19.50 24.50 29.50 32.50 39.50
hap 0.8 36.54 8.74 26.50 29.50 34.50 40.50 51.50
hcp 0.8 32.22 6.83 24.50 28.50 30.00 35.50 41.50
hap 0.9 35.92 8.54 27.50 29.50 34.50 39.50 49.50
hcp 0.9 33.82 7.43 27.50 28.50 30.50 36.50 44.50

Panel B: r = 0.4 (303 participants)

hap 0.1 21.48 9.37 9.50 14.50 20.50 29.50 33.50
hcp 0.1 24.01 8.86 9.50 18.50 26.50 31.50 33.50
hap 0.2 24.46 7.95 13.50 19.50 24.50 30.50 36.50
hcp 0.2 26.04 8.48 13.50 19.50 29.50 32.50 36.50
hap 0.5 30.34 7.34 20.50 25.50 29.50 33.50 40.50
hcp 0.5 31.39 7.06 22.50 28.50 30.50 35.50 40.50
hap 0.8 36.07 8.57 26.50 29.50 34.50 39.50 49.50
hcp 0.8 34.22 7.21 27.50 29.50 31.50 39.50 45.50
hap 0.9 35.66 8.66 27.50 29.50 33.50 39.50 50.50
hcp 0.9 34.53 7.37 27.50 29.50 32.50 37.50 43.50
Panel C: r = 0.6 (299 participants)
hap 0.1 22.54 9.09 9.50 14.50 24.50 30.50 33.50
hcp 0.1 23.27 9.51 9.50 14.50 26.50 30.50 33.50
hap 0.2 25.07 8.00 14.50 19.50 25.50 30.50 36.50
hcp 0.2 24.24 8.47 12.50 17.50 24.50 30.50 36.50
hap 0.5 30.16 7.20 20.50 24.50 29.50 33.50 40.50
hcp 0.5 30.88 7.43 20.50 25.50 29.50 35.50 40.50
hap 0.8 35.13 8.18 24.50 29.50 33.50 39.50 48.50
hep 0.8 34.29 7.67 26.50 29.50 31.50 39.50 45.50
hap 0.9 35.29 8.38 27.50 29.50 32.50 39.50 49.50
hcp 0.9 34.52 6.82 27.50 29.50 32.50 38.50 44.50

Note: Summary statistics for all 30 h-valuations. Each participant was assigned a single r, and completed all 10
h-valuations for that value of r. Each valuation is equal to the average value of H at the participant’s switching
rows in a multiple-price list (MPL). Each MPL permits the valuations to range from p30 — 0.50 to p30 + 30.50.
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Table D.6: Adjusting the Sign Test for Ties (h-Valuation Tasks)

(1) (2) (3) (4) (5) (6) (7)
Number of Cases Sign Tests
Ah >0 Al =0 Ah <0 Default  Equal Split  Prop. Split
P (CRE) B (RCRE) (p-value) (p-value) (p-value)

Panel A: r = 0.2 (298 participants)

0.1 100 60 138 0.016 0.032 0.006
0.2 94 53 151 0.000 0.001 0.000
0.5 136 81 81 0.000 0.001 0.000
0.8 174 45 79 0.000 0.000 0.000
0.9 143 64 91 0.001 0.003 0.000

Panel B: r = 0.4 (303 participants)

0.1 82 59 162 0.000 0.000 0.000
0.2 92 65 146 0.001 0.002 0.000
0.5 101 70 132 0.049 0.085 0.021
0.8 148 47 108 0.015 0.021 0.006
0.9 138 47 118 0.235 0.251 0.168

Panel C: r = 0.6 (299 participants)

0.1 100 71 128 0.074 0.105 0.037
0.2 131 65 103 0.077 0.105 0.037
0.5 93 85 121 0.065 0.105 0.021
0.8 136 47 116 0.231 0.247 0.165
0.9 126 54 119 0.702 0.729 0.644

Note: Columns (2)-(4) report raw frequencies of Ah > 0, Ah = 0, and Ah < 0 (identical to those
reported in columns (4)-(6) in Table 4). Column (5) reports the p-values for the default sign tests
(identical to those reported in column (7) in Table 4) that exclude all ties (instances of Ah = 0).
The adjusted sign tests in column (6) split ties equally between Ah > 0 and Ah < 0. The adjusted
sign tests in column (7) split ties in proportion to the observed share of Ah > 0 and Ah < 0.

Table D.7: Correlations of Risk Premia across Corresponding m- and h-Valuations

W @ 6 (4) (5) (6) (7) (8) @ o) any (12

. Panel A: Pearson’s Correlation Panel B: Spearman’s Rank Correlation
Variant 7

p=01 p=02 p=05 p=08 p=09|p=01 p=02 p=05 p=08 p=0.9

AB 02| 0.19* 0.30* 0.42* 0.31* 0.34* | 0.30* 0.28* 0.36*  0.34*  0.35*
cCD 02| 0.21* 0.26* 0.25* 0.21* 0.30* | 0.23* 0.26* 0.18% 0.22*  0.30*
AB 04| 0.19* 0.25% 0.34* 0.34* 0.25* | 0.34* 041* 0.30* 0.30* 0.27*
cCD 04| 0.03 0.11 0.04 0.28*  0.16* | 0.23* 0.30* 0.14* 0.22*  0.20*
AB 06| 0.15* 0.25% 0.44* 0.27* 0.33* | 0.33* 0.33* 0.37" 0.27% 0.33*
ch 06| 0.19* 0.16* 0.12* 0.30* 0.22* | 0.40* 0.32*  0.17*  0.27*  0.22%

Note: Correlations between m/H and M /h. (where H = 30 and M = p30) for each of the 30 combinations of (p,r) and
x € {AB,CD}. Panel A reports Pearson’s correlations; panel B reports Spearman’s rank correlations. * denotes that a
correlation is statistically significant at the 5 percent level.
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Table D.8: Correlations across p for Paired m-Valuation Tasks

Panel A: Correlations of pH — m across p

Panel B: Correlations of Am across p

p= p=
0.1 0.2 0.5 0.8 0.9 0.1 0.2 0.5 0.8 0.9
(i) r=02 (i) r=02
p=01 1.00 1.00
p=02 0.61% 1.00 0.16* 1.00
p=0.5 0.42% 0.43* 1.00 0.01 0.15* 1.00
p=0.8 0.12 0.20* 0.33* 1.00 0.06 0.11 0.11 1.00
p=209 0.09 0.11 0.26* 0.53* 1.00 0.03 0.13 0.16* 0.25* 1.00
(ii) r=04 (ii) r=04
p=01 1.00 1.00
p=0.2 0.56* 1.00 0.05 1.00
p=0.5 0.33* 0.37* 1.00 0.10 0.16* 1.00
p=08 0.08 0.15* 0.37* 1.00 0.08 0.16* 0.31%* 1.00
p=09 0.05 0.15  0.32*  0.54* 1.00 0.08 0.07  0.21*  0.28* 1.00
(iii) r = 0.6 (iii) r = 0.6
p=0.1 1.00 1.00
p=02 0.61* 1.00 0.09 1.00
p=0.5 040" 0.49* 1.00 0.04 —-0.04 1.00
p=08 0.09 0.26* 0.40* 1.00 0.10 0.00 0.04 1.00
p=09 0.06 0.13  0.28  0.49* 1.00 0.10 —-0.09 0.09  0.19* 1.00

Note: Spearman’s rank correlations of pH — m across p (panel A) and of Am across p (panel B) for the 15 paired

m-valuation tasks. * denotes that a correlation is statistically significant at the 5 percent level.

Table D.9: Correlations of Value Differences across Corresponding m- and h-Valuations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
, Panel A: Pearson’s Correlation Panel B: Spearman’s Rank Correlation
p=01 p=02 p=05 p=08 p=09|p=01 p=02 p=05 p=08 p=0.9
0.2 0.10 0.16* 0.19* 0.29% 0.28* 0.13* 0.10 0.12* 0.32* 0.30*
0.4 —0.01 0.08 0.17* 0.26* 0.16* 0.12* 0.15* 0.15* 0.24* 0.14*
0.6 —0.02 0.01 0.28* 0.20* 0.20* 0.02 —0.00 0.24* 0.14* 0.14*

Note: Correlations between (mep/H — map/H) and (M /hep — M /hag) (where H = 30 and M = p30) for each of

the 15 combinations of (p,r). Panel A reports Pearson’s correlations; panel B reports Spearman’s rank correlations.

denotes that a correlation is statistically significant at the 5 percent level.
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Table D.10: Predicting Individual-Level CRE — RCRE (h tasks)

) @) @) (1)
Outcome: CRE — RCRE € {—1,0,1}
OLS OLS OLS 2S5LS
Value Dijfference

HrpAR 2.02 1.96 7.62
(0.22) (0.22) (1.35)

Distance to Indifference
(1 —r)p(h — H) 1.06 0.84 0.21
(0.24) (0.24) (0.44)
Outcome Mean 2.73 2.73 2.73 2.73
Individuals 900 900 900 900
Observations 4,500 4,500 4,500 4,500

Note: OLS regressions using individual-level h-task data with dependent variable CRE — RCRE € {—1,0,1}.
Specifications include p and r fixed effects, as well as controls for gender, education, age, language, student
status, employment, and the number of previous Prolific approvals. All numbers reported in percentage
points; individual-cluster-robust standard errors in parentheses. For column (4), instruments are (1 — r)m,

0.5(1 +r)Am, and (1 —r)pH.
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Table D.11: Summary of Choice Patterns: Experiments Linked to m-Valuations

n @ (3) (4) (5) (6) (7) ®) ) (10) iy (12)
roop M Mean m Mean Am  AC ;}?E) ( jocz g BD CRE - RCRE Sf:lile{

02 01 1 841 046 9.0 7 6.4 76.9 1.3 0.764 78
0.2 0.1 3 793 -227 307 16.0 9.3 44.0 6.7 0.250 75
0.2 0.1 5 838  —L15 706 118 103 7.4 15 0.798 68
0.2 0.1 8 764 230  87.0 6.5 3.9 2.6 2.6 0.481 77
0.2 0.2 1 1026 149 26 6.5 2.6 88.3 3.9 0.256 77
0.2 0.2 4 9.80  —1.68 316 7.9 276 329 ~19.7 0.002 76
0.2 0.2 7 1025 083 403 9.7 278 222 ~18.1 0.009 72
0.2 0.2 10 1012 110 849 4.1 8.2 2.7 —4.1 0.317 73
0.2 05 5 1642 0.69 3.4 10.3 9.2 77.0 11 0.809 87
0.2 05 8 1568 019 102 186 169 542 1.7 0.820 59
0.2 05 11 1657 0.09 247 136 210 407 ~7.4 0.256 81
0.2 0.5 14 1498 093 394 225 211 169 14 0.858 71
0.2 08 8 2049  —0.16 15 9.0 134 761 —4.5 0.440 67
0.2 08 12 19.83 058 9.9 22.5 1.2 63.4 18.3 0.002 71
0.2 08 16 19.95 246 148 185 111 556 7.4 0219 81
0.2 08 20 19.96  0.89 253 392 152 203 24.1 0.002 79
0.2 0.9 10 2170 091 6.3 8.9 6.3 8.5 2.5 0.565 79
0.2 0.9 14 2320  —1.61 2.4 13.1 7.1 774 6.0 0.224 84
0.2 09 18 21.08 241 7.1 243 143 543 10.0 0.175 70
0.2 0.9 22 2202 094 169 369 9.2 36.9 27.7 0.000 65
0.4 01 1 771 080 114 139 7.6 67.1 6.3 0.224 179
0.4 0.1 3 653 027 636 6.5 6.5 23.4 0.0 1.000 77
0.4 0.1 5 6.60  —0.62 753 9.0 6.7 9.0 2.2 0.594 89
0.4 0.1 8 702 090 931 0.0 5.2 1.7 5.2 0.078 58
0.4 0.2 1 8.86  —0.61 9.0 10.1 3.4 75 6.7 0.080 89
0.4 0.2 1 895  -220 329 145 184 342 ~3.9 0.550 76
0.4 0.2 7 9.74 078 701 7.5 1.9 104 —4.5 0.406 67
0.4 0.2 10 752 —1.00 887 8.5 2.8 0.0 5.6 0.154 71
0.4 05 5 1389 048 17.9 4.8 16.7  60.7 ~11.9 0.015 84
0.4 05 8 1352 126 138 125 275  46.2 ~15.0 0.030 80
0.4 05 11 1490  -232 322 136 271 271 ~13.6 0.098 59
0.4 05 14 1346 -214 462 112 212 212 ~10.0 0.113 80
0.4 08 8 1913 —-178 25 16.5 1.3 79.7 15.2 0.001 79
0.4 08 12 1915 077 6.3 190 127 620 6.3 0.317 79
0.4 08 16 1847  —097 103 269 128 500 14.1 0.044 78
0.4 08 20 1894 145 313 403 7.5 20.9 32.8 0.000 67
0.4 0.9 10 2175 0.54 5.6 13.5 2.2 78.7 11.2 0.006 89
0.4 0.9 14 2230 0.12 4.6 12.3 1.6 8.5 .7 0.128 65
0.4 0.9 18 2051  —029 4.0 17.3 6.7 72.0 10.7 0.055 175
0.4 0.9 22 2137 -1.09 365 324 135 176 18.9 0.013 74
0.6 0.1 1 682 025 155 155 9.9 59.2 5.6 0346 71
0.6 0.1 3 6.68 094 515 8.8 1.8 279 ~2.9 0.595 68
0.6 0.1 5 6.23 117 727 7.8 5.2 14.3 2.6 0.520 77
0.6 0.1 8 6.37 0.30 78.3 9.6 8.4 3.6 1.2 0.797 83
0.6 0.2 1 8.39 1.15 6.1 7.6 L5 84.8 6.1 0.098 66
0.6 0.2 4 912 115 377 115 164 344 ~4.9 0.469 61
0.6 0.2 7 8.68 0.17 728 109 6.5 9.8 4.3 0.317 92
0.6 0.2 10 8.41 0.24 88.8 5.0 2.5 3.8 2.5 0.415 80
0.6 0.5 5 1454 —262 143 5.2 221 584 ~16.9 0.003 77
0.6 0.5 8 1279 -214 153 167 306 375 ~13.9 0.082 72
0.6 0.5 11 1327 -213 389 133 244 233 ~11.1 0.083 90
0.6 0.5 14 1257 -1.07 450 100 217 233 ~11.7 0.104 60
0.6 0.8 8 1829 149 43 7.6 5.4 82.6 2.2 0.565 92
0.6 0.8 12 1837  -135 101 165 8.9 64.6 7.6 0177 79
0.6 0.8 16 1933 -219 118 191 176  5L5 15 0.843 68
0.6 0.8 20 19.23 028 450 217 150 183 6.7 0.395 60
0.6 0.9 10 2074 -340 83 6.9 2.8 81.9 4.2 0.256 72
0.6 0.9 14 2265 014 76 11.4 8.9 72.2 2.5 0.619 79
0.6 0.9 18 2199  -223 77 26.9 9.0 56.4 17.9 0.006 78
0.6 0.9 22 2270  -254 171 343 157 329 18.6 0.024 70




Table D.12: Summary of Choice Patterns: Experiments Linked to h-Valuations

n @ (3) (4) (5) (6) (7) ®) ) (10) iy (12)
roop H Mean i Mean Ah  AC Cf‘}fE) ( Rgg g BD CRE - RCRE Sf:ﬁif

02 01 13 2099 185 635 149 135 8.1 14 0828 74
0.2 0.1 20 2110  -131 386 133 169 313 3.6 0.550 83
0.2 0.1 25 2057 —085 397 191 103 309 8.8 0.177 68
0.2 0.1 30 2059 267 356 9.6 178 37.0 8.2 0177 173
0.2 0.2 20 2254 —257 522 232 203 4.3 2.9 0.717 69
0.2 0.2 25 2335 118 49.3 8.2 205 219 ~12.3 0.045 73
0.2 0.2 30 2358  —1.65 514 8.3 181 222 —9.7 0104 72
0.2 0.2 35 2441  -235 357 131 226 286 ~9.5 0.141 84
0.2 05 30 3080  3.46 57T 225 113 8.5 11.3 0.008 71
0.2 05 35 2090  1.60 372 141 141 346 0.0 1.000 78
0.2 0.5 40 2065  0.83 125 236 194 444 4.2 0.592 72
0.2 0.5 45 2879 077 156 104 234 506 ~13.0 0.046 77
0.2 08 33 3458 5.23 300 417 133 150 28.3 0.001 60
0.2 08 38 3372 5.70 269 328 119 284 20.9 0.008 67
0.2 08 15 3186 3.7 1.9 3L7 8.9 475 22.8 0.000 101
0.2 08 52 3415 3.01 100 171 8.6 64.3 8.6 0.154 70
0.2 0.9 35 3331 0.17 222 306 181 202 12.5 0125 72
0.2 0.9 10 3530  2.26 9.2 19.7 158 553 3.9 0.565 76
0.2 09 a7 3470 4.03 6.7 25.3 5.3 62.7 20.0 0.001 75
0.2 0.9 54 36.10  1.89 4.0 17.3 8.0 70.7 9.3 0.105 75
0.4 01 13 2138 —297 727 102 5.7 114 45 0.285 88
0.4 0.1 20 2386  —048 617 133 8.3 16.7 5.0 0.407 60
0.4 0.1 25 2356 384  56.7 8.9 1.1 233 ~2.2 0.630 90
0.4 0.1 30 2245  —2.00 338 123 169 369 ~4.6 0.493 65
0.4 0.2 20 2597  —175 739 101 10.1 5.8 0.0 1.000 69
0.4 0.2 25 2568  —154  57.9 105 158 1538 5.3 0.440 57
0.4 0.2 30 2581  -237 627 8.4 120 169 3.6 0.468 83
0.4 0.2 35 2397  -0.80  5L1 128 1.7 245 1.1 0.836 94
0.4 05 30 3067  —3.60 654 128 179 3.8 5.1 0.415 78
0.4 05 35 3014  —057 415 171 220 195 —4.9 0.481 82
0.4 05 10 31.00  —024 412 132 250 206 ~11.8 0.113 68
0.4 05 15 3176 0.44 33.3 9.3 203 28.0 ~20.0 0.003 75
0.4 08 33 35.02  1.99 432 311 2.7 23.0 28.4 0.000 74
0.4 08 38 3537 4.00 169 465 8.5 28.2 38.0 0.000 71
0.4 08 15 3596  1.08 149 241 195 414 4.6 0.518 87
0.4 08 52 3405 0.48 1.3 155 9.9 63.4 5.6 0.346 71
0.4 0.9 35 3576 0.41 260 288 8.2 37.0 20.5 0.002 73
0.4 0.9 10 3384 195 132 263 7.9 52.6 18.4 0.004 76
0.4 0.9 a7 3518 0.39 4.2 23.6 9.7 62.5 13.9 0.037 72
0.4 0.9 54 3559 1.65 8.5 23.2 6.1 62.2 17.1 0.003 82
0.6 0.1 13 21.05 034 735 11 103 118 —5.9 0.204 68
0.6 0.1 20 2285  —101  60.6 9.9 1.3 183 ~14 0.798 71
0.6 0.1 25 2333 056 494 136 136 235 0.0 1.000 81
0.6 0.1 30 2400  —157 544 127 101 228 2.5 0.639 79
0.6 0.2 20 2594 0.79 746 113 7.0 7.0 4.2 0.406 71
0.6 0.2 25 23.64 107 66.3 8.4 120 133 3.6 0.468 83
0.6 0.2 30 2551 0.80 606 15.2 7.6 16.7 7.6 0.194 66
0.6 0.2 35 2385 0.63 481 177 139 203 3.8 0.550 79
0.6 0.5 30 3022 —177 642 173 111 7.4 6.2 0.297 81
0.6 0.5 35 3113 —2.06  50.7 6.0 209 134 ~23.9 0.000 67
0.6 0.5 40 3057 0.47 32.9 8.9 278 304 ~19.0 0.004 79
0.6 0.5 45 3023 0.40 36.1 8.3 208 347 ~12.5 0.045 72
0.6 0.8 33 3455 2.20 533 160 187 120 —2.7 0.697 75
0.6 0.8 38 33.66 113 339 129 274 258 ~14.5 0.067 62
0.6 0.8 45 3581 0.32 148 125 193 534 6.8 0.256 88
0.6 0.8 52 3444 015 95 17.6 8.1 64.9 9.5 0104 T4
0.6 0.9 35 3492 0.57 253 241 217 289 2.4 0.747 83
0.6 0.9 10 35.09  0.89 136 185 9.9 58.0 8.6 0.142 81
0.6 0.9 a7 3142 149 5.5 16.4 9.6 68.5 6.8 0.250 73
0.6 0.9 54 3521 0.00 3.2 11.3 6.5 79.0 4.8 0.366 62




Panel A. Prior Literature Panel B. Our Experiments
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Figure D.1: Prior experiment-level observations for paired choice tasks (panel A) and our
experiment-level results (panel B). In each panel, points below the 45-degree line exhibit a CRE,
while points above the 45-degree line exhibit an RCRE. The shaded grey regions in both panels
denote predicted (Pr(A), Pr(C)) combinations consistent with Am* = 0 under Assumption 2a. The
black circles in panel A depict the 143 experiments surveyed by Blavatskyy et al. (2023) scaled by
the number of observations; the black circles in panel B depict the 120 experiments that we run:
60 combinations of (p,r, M) in the m-choice tasks and 60 combinations of (p,r, H) for the h-choice
tasks.
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E Estimating a PT Model

In this section, we develop a structural PT model and estimate its key parameters. Following our
development in Example 1, under PT a person will have underlying indifference valuations m¥ g

and m¢, that satisfy

u(mjp) = m(p)u(H) and

m(r)u(mep) = w(rp)u(H).

For our estimation, we use the functional forms from Tversky and Kahneman (1992): 7(q) =
q"/q" +(1— q)7]1/7 and u(x) = z®. The goal is to estimate o and .

E.1 Estimating a PT Model Using Stage 1 m Valuations

Given the functional forms, the underlying indifference valuations are given by:

(mis)° = LS ’”Z;B=[ 2 ]
(77 + (1= p)) (" + (1= p))
[ (rp)? .
PV () L €t ) K PV - S B AR ErO LIRS
(mép)® = r 1 (H) H [p ((rp)wr(l—rp)”) ]
(7 + (1= 7))

Incorporating noise in a way that permits using the standard approach of nonlinear least squares

estimation, we model the observed valuations of individual 7 on trial ¢ as

) 1
Y %
MAB,it p;
i L " it 1] + &it (El)
| (pgy + (1= pi)7)>
1
) Nt
. 2 )Y v
mcDp,it ~ r; + (1 Tl) >W
At ) + &; E.2
H Pit ((Tipit)v + (1 = 7ripir)? " (E2)

where 7; is the common ratio for individual ¢, p;; is the probability that individual ¢ faces on trial
t, and €4 is a least-squares error term.

The typical approach in the literature is to use data on m4p valuations and equation (E.1)
to estimate the parameters (@,%) (Tversky and Kahneman, 1992). Table E.1 presents estimates
using our data on myup valuations. Column (1) contains parameter estimates when using all
map-valuations and imposing the same (&, %) for all r. Our estimate of 4 = 0.60 implies strong
overweighting of low probabilities and underweighting of large probabilities. This estimate is in line

with the typical values in the literature and is similar in magnitude to the estimate of 4 = 0.61 in
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Table E.1: PT Estimates Using Data on m-Valuations

(1) (2) (3) (4)

Overall r=0.2 r =04 r = 0.6
Probability Weighting: ’? 0.600 0.580 0.587 0.636

(0.008) (0.014) (0.014) (0.014)
Utility Curvature: o 1.209 1.351 1.179 1.112

(0.019) (0.040) (0.030) (0.028)
Note: Nonlinear least squares estimation. The model assumes functional forms 7(q) =

¢"/[¢" + (1 —¢)]*" and u(z) = . Individual-cluster-robust standard errors in parentheses. Panel
A estimates use data on m4p-valuations and the structural equation (E.1).

Tversky and Kahneman (1992). Our estimate of & = 1.209 is significantly greater than one, which
implies risk seeking in the absence of any probability distortions.

Columns (2)-(4) present separate estimates for each common-ratio factor . We find qualita-
tively similar estimates of (&,7) across the three values for r, which is reassuring given that r
does not enter into equation (E.1). We use the estimates in columns (2)-(4) to construct the PT
predictions denoted by the dashed blue and dashed-and-dotted red lines in Figure 5 of the main
text.

To formally test for differences in probability weighting between the m 4p valuations versus the

mep valuations, we estimate the following joint specification:

p’,YAB XAB
mjie = 1(j = AB) = ;

(7 + (1= pie)a») 745

1
YCD _ ».\YCD
1 = D) |prew (i A=) o
K (ripie)7eD 4+ (1 — 15pi)7CD

acp
+ €it (E3)

where j € {AB,CD} denotes the valuation type. Table E.2 presents the results under different
parameter restrictions. Columns (2) and (3) show that we reject the null of a stable v across the

map and mop valuations.
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Table E.2: Testing for a Stable Probability Weighting Function

(1) (2) (3)

Restrictions:
YAB = 7CD =7, QAR = aCp = None
QAB = QCD = &
Probability Weighting
~ 0.773
(0.007)
YAB 0.603 0.600
(0.008) (0.008)
b 1.162 0.368
(0.017) (0.006)
Utility Curvature
o 0.916 1.198
(0.014) (0.019)
OAB 1.209
(0.019)
QcD 0.193
(0.009)
F-Test: vap = vop p < 0.001 p < 0.001
Individuals 900 900 900
Observations 9000 9000 9000
Note:  Nonlinear least squares estimation. The model assumes functional forms w(q) =

¢"/[q" + (1 —¢)]"" and u(z) = = Individual-cluster-robust standard errors in parentheses. The
estimation uses data on both map and mcp valuations and the structural equation (E.3).

E.2 Estimating a PT Model Using Stage 2 Choice Data

To estimate the model use stage 2 choice data, we assume additive utility noise. Analogous to our
approach in the prior subsection, we posit a model with differential probability weighting across
the AB and CD choices, and then test whether they are the same. Hence, a person will choose A
over B when (M) — w(p)u(H) > esp, which becomes

eap < MOAB — PP | (H)*s = Dap(M, H,p).
(pYaB + (1 — p)raB)7aB

Similarly, the person will choose C over D when 7(r)u(M) — w(rp)u(H) > ecp, which becomes

r’YC’D
€CD < 1
(r’YCD + (1 — T)'YCD)’YCD

(rp)'YCD
((rpye + (1 = rp)en)icn

Macp_[ ] (H)*¢? = Dep(M, H,p, ).

As in the prior subsection, we first estimate the parameters (aap,y74p) using only the AB
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choice data. We denote an AB observation by dap; = (a;; M;, H;,p;), where a; € {A, B} is
the person’s choice. We further assume that eap ~ N(0,0%5). Then given parameter vector

0 = (aaB,vAB,0AB), the likelihood of observation dap ; is

EAB(dABJ';H) = ]1<CLZ _ A)@ (DAB(MZ)HZ7PZ)> + ]I(CLZ _ B) (1 _® (-DAB(MHHZ)pZ))) 7
OAB OAB

and the overall likelihood function is

LB) = ) log(tap(dap;0)).

daB,i

Column (1) of Table E.3 presents the parameter estimates. Much as for our estimates using
valuations data, our estimate of 745 = 0.71 implies strong overweighting of low probabilities and
underweighting of large probabilities, and is similar in magnitude to that in column (1) of Table
E.1.°

We next test for differences in probability weighting between the AB choices and the C'D
choices. We denote a C'D observation by dep; = (a;; M;, Hi, p;, i), where a; € {C,D} is the
person’s choice. We further assume that ecp ~ N(0, a% p)» and thus the parameter vector is now

0 = (aaB,vAB,acD,YcD,04B,0cp). The likelihood of a C'D observation dcp; is

ton(den: 0) = 1(ai = C)D (DCD(Mz‘,Hi,pi,Ti)) (0 = D) (1 % (DCD(Mi,HuPu’f’i))) .
ocD ocD

The overall likelihood function is then

L(O) = ), log(tap(dapi;0)) + Y. log(tep(dep,i;0)).

daB,i dcp,i

Columns (2)-(4) of Table E.3 presents estimates analogous to those in columns (1)-(3) in Table

E.2. Columns (3) and (4) show that we again reject the null of a stable v across the map and mep

valuations.©

SOur estimate of @ap = 0.70, in contrast to that in column (1) of Table E.1, is significantly less than one. While
not reported here, we also conduct both estimations while imposing that a = 1, and both estimated ~ parameters
are still less than one, again consistent with inverse-S-shaped probability weighting.

SWhile not reported here, we also conduct the estimations in both Tables E.2 and E.3 while imposing that o = 1,
and we again reject the null of a stable v across the map and mep valuations.
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Table E.3: PT Estimates Using Stage 2 Choice Data

M @) ) @)
Restrictions:
AB Choices VYAB =7CD =7, QAR = OCp = None
Only QAB = QCp =
Probability Weighting
y 0.809
(0.011)
YAB 0.710 0.737 0.710
(0.013) (0.014) (0.013)
Yo 0.886 0.461
(0.020) (0.014)
Utility Curvature
Q 0.615 0.653
(0.008) (0.010)
QaAB 0.697 0.697
(0.011) (0.011)
acp 0.252
(0.015)
Utility Noise
OAB 2.250 1.974 2.000 2.250
(0.110) (0.088) (0.086) (0.110)
ocD 0.906 1.069 0.104
(0.044) (0.058) (0.013)
Hy: vaB = vebp p < 0.001 p < 0.001
Individuals 900 900 900 900
Observations 4500 9000 9000 9000

Note: Maximum likelihood estimation using stage 2 choice data. The model assumes functional forms
7(q) = q"/[¢" + (1 —q)"]"" and u(z) = #*. The estimation in column (1) uses data on map choices,
and the estimation in columns (2)-(4) uses data on both map and mecp choices. In columns (3) and
(4), the null hypothesis of yap = ycp is tested via a Wald test.
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