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WARMUP OBSERVATIONS
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Where do the response dynamics come from?
suppose:{

∆yt = β∆st + ρ∆yt−1 + uy
t

∆st = θ∆st−1 + us
t
; ut ∼ D(0, I)

easy to see that:

Rys(h) = βθh + βθh−1 + . . .+ βθρh−1︸ ︷︷ ︸
due to policy persistence

+ βρh︸︷︷︸
R∗

ys(h)

Rss(h) = θh

setting θ = 0:

R∗
ys(h) = βρh internal propagation
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Actual response versus response conditional on future treatments
Simulated data from counterfactual.do
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Back to the example

Suppose that instead of Rss(h) = θh, you feed counterfactual Rc
ss(h)

Can show that:

Rc
ys(0) = R∗

ys(0)Rc
ss(0)

Rc
ys(1) = R∗

ys(0)Rc
ss(1) +R∗

ys(1)Rc
ss(0)

Rc
ys(2) = R∗

ys(0)Rc
ss(2) +R∗

ys(1)Rc
ss(1) +R∗

ys(2)Rc
ss(0)

Rc
ys(3) = R∗

ys(0)Rc
ss(3) +R∗

ys(1)Rc
ss(2) +R∗

ys(2)Rc
ss(1) +R∗

ys(3)Rc
ss(0)

... = ...

Example: couterfactual.do
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Illustration: recovering the original response
Using original treatment path
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Counterfactuals in practice

Estimate usual LP but control for future treatments:

yt+h − yt−1 = ah + bh∆st +
h∑
j=1

cjh∆st+j︸ ︷︷ ︸
new

+dh∆yt−1 + eh∆st−1 + vt+h

Then bh is an estimate of R∗
ys(h)

Rc
ss(h) is supplied by user given particular counterfactual
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Counterfactual response versus original response
Simulated data from counterfactual.do
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Are these operations valid?
Mechanically: yes; causally: ?

Conditioning on future treatments: are they randomly assigned?
Counterfactual treatment path: how different from Rss(h)?
Note:(

R∗
ss − R̂ss

)′
Σ−1

ss

(
R∗

ss − R̂ss

)
→ χ2

H

Worth reading: Viviano, Davide and Jelena Bradic. 2021.
Dynamic covariate balancing: estimating treatment effects over time.
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IMPULSE RESPONSE HETEROGENEITY:
KITAGAWA-OAXACA-BLINDER DECOMPOSITIONS
Cloyne, Jordà, and Taylor (2020). Decomposing the fiscal multiplier
Back to index
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Potential outcomes: A static setup first
Borrowing from applied micro

Think of observed y as coming from a latent mixture:

y = (1− s) y0 + s y1 = y0 + s (y1 − y0); s = 0, 1

Assumption:

yi ∼ f(µj; σj); j = 0, 1 unobservable random variables

we would like: E(y1 − y0) average treatment effect
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Assume linear model for latent variables: yj; j = 0, 1
let yj = µj + vj, E(vj) = 0, j = 0, 1. vj captures heterogeneity

let vj = (x− µx) γj + ϵj with E(ϵj) = 0 and E(ϵj|x) = 0

then:

Ex[E(y1|s = 1; x)− E(y0|s = 0; x)]︸ ︷︷ ︸
ATE

= [µ1 + Ex[E(x− µx|s = 1)] γ1]

− [µ0 + Ex[E(x− µx|s = 0)] γ0]

add/subtract counterfactual: Ex[E(x− µx|s = 1)] γ0

ATE = (µ1 − µ0) + Ex[E(x− µx|s = 1)] (γ1 − γ0)+

Ex [E(x− µx|s = 1)− E(x− µx|s = 0)] γ0
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Kitagawa-Oaxaca-Blinder decomposition components

recall:

ATE = (µ1 − µ0)︸ ︷︷ ︸
direct

+ Ex[E(x− µx|s = 1)] (γ1 − γ0)︸ ︷︷ ︸
indirect

+

Ex [E(x− µx|s = 1)− E(x− µx|s = 0)] γ0︸ ︷︷ ︸
composition

direct: ATE under random assignment

indirect: treatment spillovers on covariates

composition: failure of random assignment? small sample bias
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interesting null hypotheses
linear case, still working through applied micro motivation

yi = µ0 + (xi − x0) γ0 + si [β + (xi − x1) θ] + ωi

note: β = µ1 − µ0; θ = γ1 − γ0; and ωi = ϵ0,i + si (ϵ1,i − ϵ0,i)

hence:
H0 : β = 0 null of no direct treatment effect
H0 : θ = 0 null of no indirect effect
H0 : E(x|s = 1)− E(x|s = 0) = 0 null of
no composition effect
H0 : γ0 = 0 null of random assignment
(hence no composition effect possible)
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What does this mean for local projections?
let yt = (yt, yt+1, . . . , yt+H) and y denote the associated r.v.

assume conditional mean independence
let E(ys) = µs for s ∈ {0, 1}, wlog ys = µs + vs
under linearity vs = (x− µx) Bs + ϵs, then:

E(ys|x) = µs; E(vs) = 0; E(ϵs|x) = 0; s ∈ {0, 1}

note: Angrist et al. (2017) assume stronger conditional ignorability

hence:

yt+h = µh
0 + (xt − x)γh

0 + st βh︸ ︷︷ ︸
usual local projection

+ st (xt − x)θh︸ ︷︷ ︸
Kitagawa term

+ωt+h;

h = 0, 1, . . . ,H; t = h, ..., T.
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Kitagawa decomposition components

recall:

yt+h = µh
0 + (xt − x)γh

0 + st βh︸ ︷︷ ︸
usual local projection

+ st (xt − x)θh︸ ︷︷ ︸
Kitagawa terms

+ωt+h;

h = 0, 1, . . . ,H; t = h, ..., T.

direct effect: µ̂h
1 − µ̂h

0 = β̂h

indirect effect: (x1 − x)(γ̂h
1 − γ̂h

0 ) = (x1 − x)θ̂h

composition effect: (x1 − x0)γ̂h
0

ergodicity: needed to ensure x → µx
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Implications: state-dependence

note: suppose x = x∗ then total response is:

E(y1|x∗, s = δ)− E(y0|x∗, s = 0)
= δµ1 + δ[x∗ − E(x)]γ1 − {µ0 + [x∗ − E(x)]γ0}
= δβ + δ[x∗ − E(x)]θ,

remarks:
dependence on x∗ is only partial equilibrium
need identification (instruments) for x
usual single variable stratification omits other terms in x → bias
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Example from a previous experiment: two episodes

how effective was monetary policy in ...
1 November 1987 (post-stock market crash)

stocks 23% lower by end of October
Fed lowered funds rate 50bps

2 February 1996 (middle of a long expansion)
middle of stable funds rate

idea: two different scenarios, but similar policy paths →
differences not due to different policy
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funds rate path nearly identical and to baseline
baseline is average over the sample

Federal funds rate

(a) November 1987

-4
-3

-2
-1

0
1

Pe
rc

en
t

0 6 12 18 24 30 36
Horizon

Total Response: baseline Total response starting in 1987m11

(b) February 1996

-3
-2

-1
0

1
2

Pe
rc

en
t

0 6 12 18 24 30 36
Horizon

Total Response: baseline Total response starting in 1996m2

19/49



policy unable to boost activity post-1987crash
policy as usual February 1996

Industrial production

(a) November 1987
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Example: GDP response to fiscal policy varies with monetary stance
Cloyne, Jordà, and Taylor 2023
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Variation in the multiplier by horizon and stance
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Time varying estimates of the multiplier
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STATA example: Usual LPIV
kob_example.do

Response of real GDP to 1pp fiscal consolidation
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STATA example: Choosing two dates
kob_example.do

Response of real GDP to 1pp fiscal consolidation

-10
-5

0
5

Pe
rce

nt

0 4 8 12

Horizon (quarters)

Average

2004q1

1981q1

Response of rGDP to 1pp fiscal consolidation

5

0

-5

-10

0 4 8 12

Average
2004Q1
1981Q1

Percent

Quarters

90% error bands 25/49



STATA example: Monetary offset
kob_example.do

Response of real GDP to 1pp fiscal consolidation
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PANEL DATA APPLICATIONS
BACK TO INDEX
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DIFFERENCES-IN-DIFFERENCES WITH LPS
DUBE, GIRARDI, JORDÀ AND TAYLOR
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D-i-D with multiple treated groups & treatment periods

TWFE implementation of DiD (static or distributed lags) can be
severely biased.

Estimate is an average with possibly negative weights. Bad!

LP-DiD = local projections + clean controls (Cengiz et al 2019)
No negative weights. Good!
Simple reweighting to recover ATT
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Background
Difference-in-Differences (DiD)

2x2 Setting
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(Visual examples from Goodman-Bacon, 2021)
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The conventional (until recently) DiD estimator: TWFE
let Pt = 1 for post, 0 for pre; Ai = 1 for treated, 0 for control.
Static TWFE

yit = αi + δt + βTWFEDit + ϵit; Dit = Pt × Ai

Event-study (distributed lags) TWFE

yit = αi + δt +
M∑

m=−Q

βTWFE
m Dit−m + ϵit

OK in the 2x2 setting, or when treatment occurs at the same time.
Biased even under parallel trends with staggered treatment, if
treatment effects are dynamic and heterogeneous.
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The problems with TWFE in the staggered setting
TWFE as weighted-average of 2x2 comparisons (Goodman-Bacon 2021)

1 Newly treated vs Never treated;
2 Newly treated vs Not-yet treated;
3 Newly treated vs Earlier treated.
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The problems with TWFE in the staggered setting

TWFE as a weighted-average of cell-specific ATTs (de Chaisemartin &
D’Haultfoeuille 2020)

E
[
β̂TWFE

]
= E

 ∑
(g,t):Dgt=1

Ng,t

N1
wg,t∆g,t


→ Weights can be negative!
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LP-DiD Estimator
No Covariates, Outcome Lags

yi,t+k − yi,t−1 = βk LP−DiD∆Dit } treatment indicator
+ δkt } time effects
+ ekit ; for k = 0, . . . , K .

restricting the sample to observations that are either:{
treatment

clean control
∆Dit = 1 ,

∆Di,t+h = 0 for h = −H, . . . , k .

Key advantage of LP over distributed lags TWFE formulation of DiD:
differencing is in outcomes, not treatments.
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LP-DiD Estimator

yi,t+k − yi,t−1 = βk LP−DiD∆Dit } treatment indicator
+

∑P
p=1 γ

k
0,p∆yi,t−p } outcome lags

+
∑M

m=1
∑P

p=0 γ
k
m,p∆xm,i,t−p } covariates

+ δkt } time effects
+ ekit ; for k = 0, . . . , K .

restricting the sample to observations that are either:{
treatment

clean control
∆Dit = 1 ,

∆Di,t+h = 0 for h = −H, . . . , k .
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An equivalent specification to implement LP-DiD

Instead can use dummies to rule out unclean controls

yi,t+k − yi,t−1 = βk LP−DiD∆Dit } treatment indicator
+ θkUCi,t } UC indicator
+

∑P
p=1 γ

k
0,p(1+ ρk0,pUCi,t) ∆yi,t−p } outcome lags × UC

+
∑M

m=1
∑P

p=0 γ
k
m,p(1+ ρkm,pUCi,t)∆xm,i,t−p } covariates × UC

+ δkt (1+ ϕktUCi,t) } time effects × UC
+ ekit ; for k = 0, . . . , K .

UCit =1 if previously treated.
With absorbing treatment, UCit =

∑k
j=−H(j ̸=0) ∆Di,t+j
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Simulation Evidence

N=500 units; T=50 time periods.
DGP: Y0it = ρY0,i,t−1 + λi + γt + ϵit; −1 < ρ < 1; λi, γt, ϵit ∼ N(0, 25)
Binary staggered treatment.
TE grows in time for 20 periods, and is stronger for early adopters.

1 Exogenous treatment
o Units randomly assigned to 10 groups of size N/10
o One group never treated; others treated at τ = 11, 13, 15 . . . , 27.

2 Endogenous treatment
o Probability of treatment depends on past outcome dynamics.
o Negative shocks increase probability of treatment.
o Parallel trends holds only conditional on outcome lag.
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Simulation Evidence
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Average estimates and 95% and 5% percentiles from 200 replications.
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Simulation Evidence
endogenous treatment scenario
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Banking Deregulation and the Labor Share

1970-1996: staggered introduction of
(inter-state & intra-state) banking
deregulation in US states.
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Leblebicioglu & Weinberger (2020) use static & event-study TWFE to
estimate effects on the labor share.
Negative effect of inter-state banking deregulation (≈ −1p.p.).
No effect of intra-state branching deregulation.
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TWFE estimates

negative effect from inter-state
no effect from intra-state

-.02

-.01

0

.01

.02

La
bo

r S
ha

re

only FEs FEs + both treatments FEs + other policiesFEs + other policies + economy
Specification

Inter-state Banking Intra-state Branching

-8
-6

-4
-2

0
2

Co
ef

fic
ie

nt
s

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9
Years after Inter-state Banking Reform

Only FEs FEs + branching
FEs + other policies FEs + other policies + economy

(a) Inter-state Banking

-1
-.5

0
.5

1
1.

5
Co

ef
fic

ie
nt

s

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9
Years after Intra-state Branching Reform

Only FEs FEs + banking
FEs + other policies FEs + other policies + economy

(b) Intra-state Branching
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Forbidden comparisons in the TWFE specification

TWFE uses ‘forbidden’ comparisons:
earlier liberalizers are controls for later liberalizers.

Use Goodman-Bacon (2021) decomposition to assess their influence.

Contribution of unclean comparisons to TWFE estimates:
o 36% for inter-state banking deregulation;
o 70% for intra-state branching deregulation.

42/49



Effect of banking deregulation on the labor share
LP-DiD estimates

(a) Inter-state banking deregulation
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(b) Intra-state branching deregulation
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LP-DiD avoids unclean comparisons & allows controlling for y lags.
Negative effect of inter-state branking deregulation is confirmed.
But also intra-state branching deregulation has negative effect.
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